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Abstract—This survey looks at the application of formal security analysis to three classes of data structures: compact probabilistic
data structures, fast average-case runtime data structures that are vulnerable to complexity attacks, and verifiable data structures.
Recent research highlights the need to consider the security of data structures when their properties (e.g., correctness and run-time)
depend in some way on the data they represent, especially when an adversary is able to control this data. We review the key works
concerning the adversarial correctness of probabilistic data structures and complexity attacks against fast average-case runtime data
structures. Was also provide comprehensive case studies showcasing how formal security analysis of these structures is done. In
contract to the other classes of structures we consider, verifiable data structures are designed with explicit security notions. Instead, we
explore a mismatch between the needs of key transparency systems (which rely on verifiable structures) and the guarantees provided
by the traditional verifiable structure literature, emphasizing the importance of careful consideration when crafting security definitions.

✦

1 INTRODUCTION
Data structures define representations of possibly dy-

namic (multi)sets, along with operations that can be per-
formed on this representation of the underlying data. Effi-
cient data structures are crucial for designing efficient algo-
rithms [1]. The development and analysis of data structures
has largely been driven by operational concerns, e.g., effi-
ciency, ease of deployment, support for broad application.
Security concerns, on the other hand, have traditionally
been afterthoughts (at best). However, recent research has
highlighted that many data structures do not behave as
expected when in the presence of adversaries that have
the ability to control the data they represent. These results
illustrate the need to rigorously analyze certain classes of
data structures using the provable security paradigm. In this
paper, we give a thorough discussion on the key works from
three classes of data structures: compact probabilistic data
structures, fast average-case runtime data structures, and
verifiable data structures. We briefly introduce each of these
class of data structure below and provide an integrated
roadmap for the rest of our paper.

Probabilistic data structures (PDS) provide compact
(sublinear) representations of potentially large collections of
data and support a small set of queries that can be answered
efficiently. Prime examples of such structures include the
Bloom filter [2], the HyperLogLog [3], and the Count-min
Sketch [4]. These space and (by extension) performance
gains come at the expense of correctness. Specifically, PDS
query responses are computed over the compact representa-
tion of the data, as opposed to the complete data. As a result,
PDS query responses are only guaranteed to be “close” to
the true answer with “large” probability, where “close” and
“large” are typically functions of structure parameters (e.g.,
the representation size) and properties of the data. These
guarantees are stated under the assumption that the data
and the internal randomness of the PDS are independent.
Informally, this is tantamount to assuming that the entire
collection of data is (or can be) determined before any

random choices are made by the PDS. For many PDS, this
means before some number of hash functions are sampled,
as the PDS operates deterministically after that.

Recent works have begun to explore the impact on
correctness guarantees for data that may depend upon the
internal randomness of the structure, and the initial findings
are negative. In Section 2 we will survey these works and
describe their efforts to retain the correctness guarantees
of PDS when this data independence assumption does not
hold. We also provide a detailed case-study analyzing the
count-min sketch using a provable security style treatment.
We end by highlighting open questions and provide brief
descriptions of potential directions for future research.

In Section 3 we turn our attention towards the class
of data structures that are susceptible to so called “com-
plexity attacks”. In contrast to the probabilistic data struc-
tures we discussed earlier, this class of structure are not
space-efficient (compact) and, in turn, give exact answers
to queries. These data structures, e.g., hash tables, offer fast
average-case runtime of their operations, but have worst-
case runtime that is poor (in terms of the requirements
of real-world applications). Recent research shows that
adaptive adversaries are able to force worst-case runtime
for these structure, often demonstrated by attacks on real-
world systems. Therefore, instead of focusing on adversarial
correctness as in the PDS section, we now focus on the
expected run time of these structures in the presence of
an adversary. We review prior work on complexity attacks
against hash tables and skip lists [5]. Unfortunately, there is
a lack of formalization of these attacks and an absence of
provable security treatment of proposed countermeasures,
so we give a case study exploring how one may go about
securing hash tables against these attacks from a provable
security perspective. Finally, we outline open challenges in
securing data structures of this nature.

Lastly, we shift directions to discussing verifiable data
structures. Unlike the previous two classes of data structures
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we consider, these structures are designed with specific
and explicit security notions in mind. Verifiable (or au-
thenticated) data structures have existed in the literature
for decades [6]. Traditionally, these works assume that a
trusted source creates a data structure from some initial data
collection, and publishes a commitment (or more generally,
public verification information) to it. The structure is then
given to a query-responding party, who is not assumed
(by clients, anyway) to be honest. Clients can then make
queries to this untrusted responder, and verify the validity
of the response (with respect to the honestly generated
representation) using the published commitment. This veri-
fiable structure paradigm is useful when a data collection is
being replicated over many responders (for, say, efficiency
and security reasons) and these responders have incentives
to be dishonest. Some applications where these structures
have been employed include certificate revocation[7], [8],
[9], [10] and downloading content from (untrusted) internet
mirrors [11], [12].

In Section 4, we first survey the prior work in the
verifiable data structure space. We then review the work that
has been done on a special class of verifiable data structures
called zero-knowledge sets. In addition to the verifiability
property referred to above, this zero-knowledge set family
of structures have strong privacy properties. We finish the
section with a case study discussing the use of verifiable
structures in key transparency systems. Informally, key trans-
parency systems are employed by end-to-end messaging
systems with large user bases to automatically ensure users
are getting the “correct” public key of another user they
wish to communicate with. We explore a mismatch between
the needs of key transparency systems, and the security
properties that are captured in the traditional verifiable
structure literature.
2 PROBABILISTIC DATA STRUCTURES
2.1 Streaming Setting

First, we note that a number of PDS are often used
in an online setting where data elements are inserted and
subsequently “forgotten”. This notion is formalized by the
streaming setting, where a stream of data S⃗ = e1, e2, . . . is
a finite sequence of elements ei ∈ U for some universe U .
The elements of a stream can have > 1 frequency (that is,
they need not be distinct), and we define the frequency of
some x ∈ U as n̂x = |{i : ei = x|}. In the streaming
setting, the stream is presented element-by-element, with
no buffering or “look-ahead”. More specifically, the stream
is processed in order, and the processing of ei is completed
before the processing of ei+1 begins and once ei is processed
it cannot be recalled. The streaming setting is extensively
used in the count-min sketch case study in Subsection 2.5.
Moreover, a precursor to the work on the provable security
of probabilistic data structures focused on two-party sketch-
ing protocols in the presence of an adversarially generated
stream [13]. In particular, the work focused on the ability of
the two parties to jointly compute a function when their in-
puts (which are not known to the other party) are adaptively
chosen by an adversary. The inputs are provided as a stream
with a total size larger than the space available to any of
two honest parties, so they must keep and store their inputs
in a compressed representation. The authors constructed

adversarially robust solutions to computing set equality and
the approximate size of the symmetric difference in this
setting.
2.2 Bloom Filters and Approximate Set Membership

PDS
The first works to explore PDS in a provable security

paradigm focused on the Bloom filter [2]. The Bloom fil-
ter admits approximate set-membership queries. The struc-
ture is widely used in many computing contexts, such as
databases [14], networking [15], distributed systems [16],
and search [17]. All of these contexts have clear potential
adversarial incentives to disrupt expected operation, but
traditionally such threats are not considered – especially as
it comes to the Bloom filter’s correctness guarantees in such
conditions.

A Bloom filter represents a set S of data as a length m
bit-array where m is much smaller than the actual number
of bits needed to store S in its entirety. Initially, all m bits
are set to 0. An element x ∈ S is added to the Bloom filter
by computing k hash values h1(x), h2(x), . . . , hk(x) ∈ [m]
and setting all the corresponding array positions to 1. A set
membership query for any y ∈ S is answered by running y
through the k hash functions as before and responding
positively if and only if all positions corresponding to the
output of the hash functions hold a 1 bit (and negatively
otherwise). False negative responses are not possible, but
false positives exist. We point the reader to [18] for an
analysis of the false positive rate in the non-adversarial
setting.

Naor and Yogev were the first to consider settings in
which inputs and queries may be chosen by an adaptive
adversary and formally investigate attacks that can occur
in such a setting [19]. Their results show that adversaries
can find queries that are guaranteed to be false positive
for a given instantiation of a filter and data collection.
Such attacks have been shown to be able to disrupt real-
world systems [20]. In response, they formalized a notion of
adversarial correctness for a modified Bloom filter structure
of their own construction and provide a correctness bound
for it.

Clayton et al. [21] extend the work of Naor and Yo-
gev by considering stronger adversaries. They allow for
the adversary to insert elements into the structure after
the adversary has started to issue queries – that is, they
consider a fully mutable setting. Further, they formalize a
notion of adversarial correctness that extends further than
only Bloom filters. They consider a large class of abstract
probabilistic data structures, rather than just approximate
set-membership data structures. In their work, they also
concretely analyze the counting filter [22] and the Count-
min sketch [4].

Specifically for the Bloom filter, Clayton et al. show
that the basic structure is insecure, in that the false positive
rate on any query can be made arbitrarily close to one. In
the immutable setting (where an adversary is not allowed
to make insertions after the filter is instantiated with an
adversarially selected data set), the structure can be made
secure by adding a per-representation salt. In the mutable
case, a combination of keeping the representation private,
swapping hash functions for secretly keyed primitives, and
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thresholding (not permitting more insertions to the structure
based on the Hamming weight of the bit array) is necessary
to secure the structure.

More recently, Filić et al., in [23], analyzed both the
Bloom filter and Cuckoo filter [24] (another approximate
set-membership PDS) from a provable security perspective.
This paper examined both correctness and privacy (with
respect to hiding the underlying set of elements for a par-
ticular representation) for these structures. While Naor and
Yogev [19] and Clayton et al. [21] employ a game-based no-
tion of security, this work uses a simulation-based approach.
Nonetheless, similar to findings of these previous works,
Filić et al. show that swapping the usual hash functions in
these structures for keyed primitives (like a pseudorandom
function) result in structures that are adversarially robust in
terms of both correctness and privacy.
2.3 HyperLogLog

The HyperLogLog (HLL) is a PDS that provides a com-
pact representation of a set and can accurately approximate
the number of distinct elements in the set (i.e., the set’s cardi-
nality). For a full description of the HLL we point to the orig-
inal paper [3]. The HLL (including its variants [25], [26]) is
widely used to determine the cardinality of a set in settings
where adversaries have strong incentives to manipulate the
reported answer, such as computing Facebook’s distinct vis-
itor count [27], Google’s PowerDrill platform [28], network
switching [29], and DoS attack detection [30].

Patterson and Raynal [31] provide a provable security
treatment of the HLL. They first present attacks which
exploit the use of fixed and publicly computable hash func-
tion in the HLL to cause large cardinality estimate errors.
They then show that by switching these hash functions
for a secretly keyed primitive that (even in the setting
where an adversary has complete access to the internal state
of the structure) the structure remains secure in terms of
conserving the non-adversarial correctness guarantees of
the structure. They do so in a simulation security based
paradigm, which inspired the security framework in Filić
et al. [23].

Prior to this, Revirigeo and Ting provide attacks against
the HLL in a model where the adversary has access to a
“shadow” device that mirrors the structure that is being
attacked [32]. Patterson and Raynal point out this setting
in unrealistic, but nonetheless improve the attack in this
model. Further, the privacy properties of HLL were ex-
amined in [33] with negative results. The use of salts was
suggested as a possible mitigation, but no formal analysis
of this suggestion was given. It remains an open problem to
have a provable security treatment of the privacy properties
of HLL with respect to hiding the elements of the underlying
set.
2.4 Compact Frequency Estimators

Compact frequency estimators are a class of PDS that
compactly represent a collection of streaming data (usually
modeled as a multiset), and provide approximately correct
frequency estimates (that is, the number of times any par-
ticular element has appeared in the stream). Alternately,
compact frequency estimators can be viewed as providing
a compact representation of the frequency distribution of a
particular data stream. Compact frequency estimators are

used in the database systems [34], [35], machine learning
contexts [36], [37], [38], and networking tools [39], [40], [41].
For a comprehensive survey on the applications of Count-
min sketch, one of the most popular compact frequency
estimators, we point to [42]. Correctness guarantees of com-
pact frequency estimators assume that the data stream does
not depend on the internal randomness of the structure,
however this assumption is often not valid in real world
deployments.

As previously stated, Clayton et al. were the first to
examine compact frequency estimators from a provable
security perspective [21]. They specifically examined the
Count-min sketch [4] and presented attacks that could cause
large frequency estimation error when the internals state of
the structure or the hash functions used by the structure
were made available to the adversary. They were able to
prove security of the structure when the internal state of
the structure is kept private and a secretly keyed primitive
was used in place of the usual hash functions. However,
their defined adversarial goal was very conservative. Any
fixed amount of frequency estimation error was considered
a win for the adversary, rather than an accumulated error
that surpassed that of the non-adversarial correctness guar-
antee. Further, their construction relied on a thresholding
technique, in which the structure would not accept any more
updates after a bounded number of insertions.

Continuing this line of work, Markelon et al. [43] an-
alyzed compact frequency estimators in adversarial envi-
ronments with a provable security style treatment. They
analyzed both the Count-min sketch and HeavyKeeper [44],
and their results were overwhelmingly negative in all cases.
That is, even in the setting in which the internals of the
structure were kept private and a secretly keyed primitive
was used in place of the usual hash functions, efficient
attacks were found that cause large frequency estimation
errors on arbitrary elements. We present a comprehensive
review of these findings for the Count-min sketch in the
case study in the next subsection. Further, there have been
a number of works from the streaming data community
that have analyzed the adversarial robustness of compact
frequency estimators, with similar negative results [45], [46],
[47], [48]. Lastly, a number of papers have used compact
frequency estimators for privacy preserving schemes [49],
[50], [51], but it remains an open area of interest to study
the privacy properties of the structures themselves from a
provable security perspective.
2.5 Case Study: Count-min sketch

We summarize findings of Markelon et al. [43] regard-
ing the Count-min sketch in this case study.

The Count-min Sketch Structure.
We begin by giving a pseudocode description of the

Count-min sketch (CMS) in Figure 1. We (as the authors
in [43]) use the syntax for data structures first presented
in [21]. The syntax first fixes sets of data objects, responses,
and keys. Then it defines a set of allowed queries, each a
function from data representation to responses; and a set of
allowed updates, each a function from data representation
to data representation. A concrete data structure is then a
tuple of a representation algorithm REP, a query evaluation
algorithm QRY, and an update algorithm UP. The REP
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REPK(S)
1 : M ← zeros(k,m)

2 : for x ∈ S
3 : M ← UPK(M, upx)

4 : return M

UPK(M, upx)

1 : (p1, . . . , pk)← R(K,x)

2 : for i ∈ [k]

3 : M [i][pi] +=1

4 : return M

QRYK(M, qryx)

1 : c←∞
2 : (p1, . . . , pk)← R(K,x)

3 : for i ∈ [k]

4 : if c > M [i][pi]

5 : c←M [i][pi]

6 : return c

Fig. 1: A possibly keyed count-min sketch structure, CMS[R,m, k] admitting point queries for any x ∈ U . The parameters are
integers m, k ≥ 0, and a keyed function R : K × U → [m]k that maps data-object elements (encoded as strings) to a vector of
positions in the array M . A concrete scheme is given by a particular choice of parameters.

algorithm instantiates a new concrete instance of a structure
with a possible initial data collection. The QRY algorithm
answers queries with responses on the structure’s represen-
tation of its underlying data collection, in accordance with
the allowed set of queries and responses. The UP algorithm
handles updates to the structure, such as inserting new
elements or deleting existing elements. Each algorithm is
allowed to take a key to separate secret randomness from
any public randomness used to instantiate the structure. The
common case of unkeyed structures is captured by setting
the keyspace to the empty-set. Given this syntax, we can use
it to not only instantiate concrete structures, but also define
security notions for those structures. A detailed overview of
this syntax is given in Appendix B.

An instance of a CMS structure is initialized as a k×m
matrix M of zero-valued counters, and a mapping R be-
tween the universe U of elements and [m]k. An element x
is inserted into the CMS representation by computing
R(K,x)= (p1, p2, . . . , pk), and then adding 1 at each of the
counters M [i][pi] to which x maps. In the original CMS pa-
per [4], it is specified that (p1, . . . , pk)= (h1(x), . . . , hk(x))
where the hash functions are sampled at initialization time
from a family H of pairwise-independent hash functions.
The authors in [43] generalize this to the function referred
to as R to not only make the presentation cleaner, but also
allow the mapping to depend on secret randomness, namely
a key K .

The point query QRY(qryx) returns n̂x

= mini∈[k]{M [i][pi]}, where we take n̂x to be the returned
estimated frequency of x and nx to be the actual frequency
of x. Further, we often shorten this to just QRY(x) for
the sake of brevity. The analysis in [43] considers the
insertion-only model, as in the adversarial setting there is
no way to enforce the so-called honest deletion policy. The
policy states that only elements that have been inserted
and have a frequency greater than zero may be deleted.
There is no way to ensure an adversary adheres to this.
In the insertion-only case, it must be that n̂x ≥ nx. This
is intuitive, because the CMS estimate on a query for
element x selects a counter in some row that x maps to,

which contains a value that is of all the insertions of x and
all the insertions of other elements that collide with x on
that counter. The CMS estimate inherently minimizes this
collision noise by choosing the counter with the minimum
value.

We can also say, by analysis in [4] that for
any ϵ, δ≥ 0, any x∈U , and any stream S⃗ (over U ) of
length N , it is guaranteed that Pr[ n̂x − nx >ϵN ] ≤ δ
when: (1) k= ⌈ln 1

δ ⌉, m= ⌈ eϵ ⌉, and (2) R(K,x) =
(h1(K ∥x), h2(K ∥x), . . . , hk(K ∥x)) for hi that are uni-
formly sampled from a pairwise-independent hash fam-
ily H . This guarantee does not depend on anything, except
for the length of stream N . However, as [43] points out,
this guarantee only holds in the non-adversarial setting.
In realty, there is the implicit requirement that the stream
and the queried element x are independent of the internal
randomness of the structure (i.e., the coins used to sample
the hi). Equivalently said, the stream S⃗ and the queried
element x are determined before the random choices of the
structure are made – that is, adversaries are strictly non-
adaptive.

The Frequency Error Attack Model.
We present the formal ERR-FE attack model that is

given in [43] in Figure 2. The attack model parameters u, v
determine whether the adversary A is given the secret key
K and the internal state of the representation repr, respec-
tively. That is, we model settings in which the representation
is kept private or is continuously viewable by the adversary.
Further, we consider both the keyed hash and unkeyed hash
settings. Considering all possible values of u, v gives us a
total of four settings that the experiment encodes.

The attack experiment starts by initializing an empty
data-object S⃗, and randomly selecting a key K for the
REP, UP, QRY algorithms. Next, an initial representation repr
of the empty S⃗ is computed. The adversary is provided a
target x ∈ U , and given access to oracles that allow it to
update the current representation (Up) and to make any of
the queries permitted by the structure (Qry). The adversary
(and, implicitly, REP, UP, QRY) is provided oracle access
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Atkerr-fe[u,v]
Π,U (A)

1 : S⃗ ← ∅;K ←← K
2 : repr←← REPK(S⃗)

3 : kv← ⊤; rv← ⊤
4 : if u = 1 : kv← K

5 : if v = 1 : rv← repr

6 : x←← U
7 : done←← AHash,Up,Qry(x, kv, rv)

8 : nx ← qryx(S⃗)

9 : n̂x ← QRYK(repr, qryx)

10 : return |n̂x − nx|

Up(up)

1 : repr′ ←← UPK(repr, up)

2 : S⃗ ← up(S⃗)

3 : repr← repr′

4 : if v = 0 : return ⊤
5 : return repr

Qry(qry)

1 : return QRYK(repr, qry)

Hash(X)

1 : if X ̸∈ X : return ⊥
2 : if H[X] = ⊥
3 : H[X]←← Y
4 : return H[X]

Fig. 2: The ERR-FE (ERRor in Frequency Estimation) attack model. The attack model returns the absolute difference between the
true frequency nx of an adversarially chosen x ∈ U , and the estimated frequency n̂x.

to a random oracle Hash : X → Y , for some structure-
dependent sets X ,Y . The output of the experiment is the
absolute difference between the true frequency of x and the
structure’s reported estimated frequency of x; i.e., |n̂x−nx|.

The ERR-FE attack model is presented as an attack
model, rather than a traditional security experiment. This
is because the authors give attacks that created significant
frequency estimation error (far higher than the non-adaptive
bound) in all settings. Therefore, they do not prove adver-
sarially robustness, and instead they explore lower bounds
on the error created by their attacks. The error created by
the attacks is reported as a random variable labeled Err in
terms of the adversary’s resource budget (that is qQ calls
to Qry, qU calls to Up, and qH calls to Hash in the ROM.).
We next present the attacks from [43].

Insecurity in All Settings.
The authors in [43] give attacks that render large fre-

quency estimation errors in all settings defined in the ERR-
FE attack model. We summarize their findings for the CMS
here. Note, the authors use the term “public representation
setting” and “private representation setting” when v = 1
and v = 0, respectively, in the ERR-FE attack model. Like-
wise, they use the term “public hash setting” and “private
hash setting” when u = 1 and u = 0, respectively, in the
ERR-FE attack model. Hash functions are made “private”
by keying them with a (non-empty) randomly generated
secret key. We will use this verbiage as well.

The authors find that a necessary and sufficient con-
dition to create an overestimation error for the CMS on
target x is to find a cover set for x. A cover set for x
(for a CMS with parameters m, k and key K) is a set of
elements {y1, ..., yk} such that ∀i∈[k]:R(K,x, i)=R(K, yi, i)
and ∀i∈[k]:yi ̸=x. In other words, a set of elements distinct
from x that collide on every counter that x maps to in the
structure.

Once the cover is found, it can be repeatedly inserted,
through Up(yi) calls on yi ∈ {y1, ..., yk} (an equal amount
on each yi to maximize error). The challenge in all the
settings is to find a small cover (with size ≤ k) using as

few resources as possible. Specifically, an attacker wants
to minimize the number of insertions it uses to find a
cover. This allows the attacks to maximize error, by using
as much of its allowed insertions (its Up budget qU ) to
insert the cover, which causes frequency estimation error on
the target x. In turn, it is expected that frequency estimation
error ≥ k

q′U
is achieved, where q′U is the number of insertions

available to the adversary once a small cover set is found.
We give the public hash setting attack from [43] in

Figure 3. The attack never makes use of a view of the
representation, so the result is the same if the representa-
tion is public or private. The authors provide analysis that
shows that the cover set that is found in this attack will
be tightly bound to size k. Thus, with sufficient Hash query
budget, qH , this attack will achieve E[Err] ≥ ⌊ qUk ⌋. Further, it
is shown that the expected number of calls to Hash is tightly
bound to mHk, where Hk is the kth harmonic number.

The authors also give an attack in the public representa-
tion and private hash setting, where a cover is found by ob-
serving elements that cover the counters of the target via the
view of the representation and a strategy random insertions.
In this case, the authors show that E[Err] ≥ ⌊ qU−mHk

k ⌋.
Most surprisingly, the authors also present an efficient

attack in the private representation and private hash setting.
The attack follows a three-step algorithm that first finds
a cover set using only the Up oracle and the Qry oracle,
then reduces the size of this initial cover to be of size
at most k), and finally performs the repeated insertions
strategy to maximize error. This attack achieves expected
error E[Err] ≥ ⌊ qUk −mHk⌋. For full details on these attacks,
we again point to the original paper [43].
2.6 Open Problems
Towards a Meaningful Notion of Security for Compact
Frequency Estimators.

As shown, the CMS is insecure for the ERR-FE notion
of security, even when keeping the internals of the structure
private and swapping the usual choice of hash functions for
a secretly keyed primitive. This is a surprising result, as use
of private representations and private hash functions works
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CoverAttackHash,Up,Qry(x,K, repr)

1 : cover←FindCoverHash(x,K)

2 : until qU Up-queries made:
3 : for e ∈ cover: Up(e)
4 : return done

FindCoverHash(x,K)

1 : cover← ∅; found← False

2 : I ← ∅; tracker← zeros(k)

3 : // R(K, x)[i] = Hash(⟨i,K, x⟩)

4 : (p1, p2, . . . , pk)← R(K,x)

5 : while not found
6 : if qH Hash-queries made
7 : return ∅
8 : y ←← U \ (I ∪ {x})
9 : I ← I ∪ {y}

10 : (q1, q2, . . . , qk)← R(K, y)

11 : for i ∈ [k]

12 : if pi = qi and tracker[i] ̸= 1

13 : cover← cover ∪ {y}
14 : tracker[i] = 1

15 : if sum(tracker) = k

16 : found← True

17 : return cover

Fig. 3: Cover Set Attack for the CMS in public hash function setting. We use R(K,x) to mean
(Hash(⟨1,K, x⟩),Hash(⟨2,K, x⟩, . . . ,Hash(⟨k,K, x⟩))). The attack is parameterized with the update and Hash query budget qU
and qH , respectively.

in achieving meaningful notions of security for a wide
variety of other structures, as shown in the above survey
subsections. The information gained from a CMS query
response leaks enough information for an attacker to create
a large amount of error. Further, the authors in [43] also
show that the HeavyKeeper is insecure, and it is not hard to
see that the same general technique used here would lead to
similar attacks against other compact frequency estimators,
like the Count sketch [52] or the XY-Sketch [53].

So we are left to ask – is there some technique that
could, be leveraged to provide a meaningful notion of
security? To this end, in [21] a provably secure CMS with
a private representation and private hash function was
provided. However, the authors assumed a version of CMS
that disallows updates after a certain structural occupancy
threshold is reached. It is unclear if any implementations
actually do this, or, more generally, how tenable it would be
in practice.

In [43] the authors propose a new structure called the
CountKeeper. The attacks given in [43] are less effective
and more resource intensive when mounted against Count-
Keeper, compared to the CMS and HeavyKeeper. Further,
the structure gives the ability to flag suspicious (adver-
sarial) estimates, thus potentially providing better practical
adversarial robustness. However, the CountKeeper does not
provide a provable notion of security – something that we
greatly desire.

Barring the creation of a structure whose query re-
sponses do not leak information about query response error
being created (that can be then used to amplify this error), it
seems unlikely any structure can satisfy a notion of security
given in the ERR-FE attack model. Thus, a possible avenue
for progress could be to investigate a notion of security
that reflects the overwhelming use of compact frequency

estimators – that of identifying the most frequent elements
of a data collection or stream. The general goal is known
(in the literature) as the top-K problem [54], the heavy
hitters problem [55], or the hot items problem [56]. It is
not possible to solve these problems exactly in space less
than linear of the data collection [57]. However, compact
frequency estimators are commonly used along with a small
data structure (such as heap) placed “on top” of them to
solve approximate versions of these problems [44], [58], [59].

A security notion for approximate frequent element
identification could capture the ability to identify true fre-
quent elements in an adversarially generated stream, with-
out mistakenly reporting non-frequent elements. A possible
strategy to go about doing this would be to design a
structure that stores elements in a separate stash once their
estimated frequency exceeds a threshold that is some frac-
tion of the true frequent element definition. Then, by exactly
tracking the insertions of elements in this stash, one can en-
sure that a particular element is a genuine frequent element,
rather than an adversarially produced one. Alternatively,
one could experiment with thresholding, like in [21], but
on the querying side, instead of the insertion side. One
could report all query responses as 0 until they reach a
certain threshold (near that of a true frequent element), thus
preventing the early discovery of cover sets. Cover sets have
been shown in [43] to be a necessary component to create
frequency estimation errors in many compact frequency
estimators. Therefore, making it resource intensive for an
attacker to identify the existence of a cover set can limit
their ability to create error. We leave full exploration of these
ideas to future work.

More Structures to Explore.
Singh et al. give a comprehensive overview of numer-

ous probabilistic data structures [60], which are perhaps
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good targets for a provable security style treatment. We
highlight two that are widely used, but lack concrete results
around adversarial robustness.

The quotient filter [61] is another approximate set-
membership structure. It is a hash table based construction
where each entry only consists of a fingerprint of the item
being stored and some additional meta-data bits. Quotient
filters have been used for privacy-preserving authentication
schemes [62], deep packet inspection [63], and duplicate
detection over large streams [64]. An examination of the ad-
versarial correctness and privacy is necessary to illuminate
if the quotient filter is still appropriate for these applications
in the adversarial setting.

Locality-sensitive hashing [65] is a probabilistic data
structure that can be used to approximate similarity search
measurements. It solves the approximate nearest-neighbor
search problem by maximizing hash collisions between sim-
ilar input elements – in turn, hashing similar elements to the
same bucket in the structure. The structure is widely used
in computational biology, audio and video fingerprinting,
and parallel computing. For a survey on the applications
of locality-sensitive hashing, we point the reader to [66].
It would be interesting to explore how the presence of an
adaptive adversary could disrupt the similarity matching
ability of the structure.
3 FAST AVERAGE-CASE RUNTIME DATA STRUC-

TURES
3.1 Hash Tables

Hash tables are a data structure that map keys to values
and supports insertions, deletions, and look-ups. They are
generally stored in memory as m buckets, where each
bucket contains a linked-list of key-value pairs. To map key-
value pairs to buckets, a hash function that maps from the
key-space to [m] is computed on the key and the key-value
pair is stored at the computed bucket index. We formalize
this description of hash tables in our case study in 3.3.
Assuming the hash function has good collision resistance
properties, the amortized average case complexity of inser-
tions, deletions, and look-ups is Θ(1). For these efficiency
reasons, hash tables are widely used in many applications
such as implementing associative arrays [67] and sets [68]
in many programming languages, in cache systems [69], as
well as for database indexing [70].

However, this average-case performance is based on
the assumption that the data inserted into a hash table
is independent of the (possibly random) choice of hash
function used to map key-values pairs to buckets. This
assumption does not hold in the adversarial case, when
insertions may, in fact, depend on the hash function. Many
previous works have examined how to exploit a bad choice
of hash functions to force operations to degrade to the
worst-case performance, O(n) where n is the total number
of elements residing in the structure. We will summarize the
prior work below, and then provide a case study to explore
how one could examine hash tables through a provable
security paradigm.

Crosby and Wallach [71] investigate denial-of-service
(DoS) attacks via complexity attacks against a number of
applications that internally use hash tables to process and
store data. Specifically, the authors show that by selecting in-

put data such that all the elements hash to the same bucket,
performance of the upstream application can be degraded.
Their attacks rely on the use of weak (non-cryptographic)
and fixed hash function. Specifically, they were able to
cause the Bro network-intrusion detection system [72] to fail
by overloading the system, causing it to drop all network
traffic for a large period of time. The authors suggest that
swapping weak hash functions (like the XOR hash function
used in Bro) for universal hash functions [73] prevents the
type of attacks they describe. However, this is not formally
proved.

Similarly, Klink and Walde [74] present attacks that
caused web applications servers to use 99% of their CPU for
prolonged lengths of time by only sending a single carefully
crafted HTTP request. These attacks also exploited a bad
choice of hash functions in the implementations of hash
tables in many common programming languages (PHP,
ASP.NET, Java, etc.) that caused worst-case performance on
targeted web servers.

Follow-up work by Aumasson et al. [75] showed fur-
ther vulnerabilities in many programming languages’ de-
fault hash table implementations. This was done by analysis
of the commonly used non-cryptographic MurmurHash2,
MurmurHash3, and CityHash64 hash functions [76], lead-
ing to efficient algorithms for generating arbitrary multi-
collisions in all cases. SipHash [77], a pseudorandom func-
tion designed to be fast for short-inputs, was proposed as
an alternative that prevented these attacks and has been
adopted by many of the affected programming languages.
While this fix seems to work in practice [78], (to our knowl-
edge) no formalization concerning the provable security of
these secretly keyed hash tables exist.

Further, in [79] complexity attacks were presented
against two common flow-monitoring systems that use hash
tables as part of their core algorithm, greatly increasing
the look-up latency of these systems. A hash function the
authors believed to be able to prevent these attack was
proposed, however little has been done to validate such
claims. Moreover, Linux Netfiler [80] attempts to defend
against complexity attacks by instantiating each new hash
table with a fresh random salt. Yet, in [81] it was shown that
remote timing attacks may stultify the use of the salt. If the
salt is of small enough length, a brute force attack can be
mounted to discover the particular salt used, and then the
standard attack can be mounted.
3.2 Skip Lists

A skip list [5] is a data structure that uses a random-
ized storage technique for efficient insertion, deletion, and
search on an ordered sequence of elements. As opposed
to balanced trees, skip lists are faster on real hardware,
more space efficient, and less complex to implement, while
possessing the same asymptotic average runtime (Θ(log n)
for all operations). Unlike all the previous structures we
have discussed, the random choices of the structure (e.g.,
the choice of hash functions for PDS or hash tables) are not
fixed after instantiation time in skip lists. Upon an element’s
insertion into the structure, the element is assigned a ran-
dom “height” from one up to some max height, with higher
heights being increasingly less probable. This randomized
height mechanism allows one to efficiently “skip” over a
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number of elements when conducting a search on the or-
dered data by starting a search at the maximum height and
only traversing down heights (where a larger proportion
of elements reside) as necessary. For a full description of
the structure and its algorithms, we again point to the
original paper [5]. Skip lists have been used to efficiently
process time-series forecasting queries [82], for peer-to-peer
asynchronous video streaming[83], and in the construction
of verifiable dictionaries [84] (see Section 4).

The original skip list paper [5] notes that an adversarial
user can force worst-case runtime for the operations of a
skip list (O(n) for all operation) if they had they access to
the heights of the elements in the structure. The attack is
simple; an adversary only needs to delete any element with
height greater than 1. This degenerates the list by flattening
it and removing the possibility of any skips occurring when
a search is performed. Thus, it is crucial to keep the internal
structure of a skip list private to prevent this attack. How-
ever, recent work by Nussbaum and Segal [85] show that
the internal structure of a skip list can be discovered even
if kept private through timing attacks. By issuing a series of
search queries, an attacker is able to correlate the height of
an element with the time taken to respond. Once the heights
of elements contained in the structure are discovered, the
attacker then simply carries out the attack described in the
original paper. The authors suggest a structure called a
splay skip list, that randomizes the heights of the elements
during a search query, to prevent this attack, but provide no
formalization of its security.
3.3 Case Study: Hash Tables

REPK(S)
1 : T ← L×m

2 : for (k, v) ∈ S
3 : T ← UPK(T, up(k,v))

4 : return T

UPK(T, up(k,v))

1 : c← QRYK(T, qry(k,v))

2 : if c ̸= ⋆

3 : UPK(T, del(k))

4 : i← R(K, k)

5 : T [i].insert((k, v))

6 : return T

UPK(T, delk)

1 : c← QRYK(T, qry(k))

2 : if c ̸= ⋆

3 : i← R(K, k)

4 : T [i].remove((k, v))

5 : return T

QRYK(T, qryk)

1 : a← ⋆

2 : i← R(K, k)

3 : b← T.find(k)

4 : if b ̸= null

5 : a← b

6 : return a

Fig. 4: A possibly keyed hash-table structure HT[R,m] admit-
ting insertions, deletions, and queries for any k ∈ Uκ and
its associated value v. The parameters are an integer m ≥ 0,
and a keyed function R : K × Uκ → [m] that maps the
key part of key-value pair data-object elements (encoded as
strings) to a position in the one of the table buckets T . A
concrete scheme is given by a particular choice of parameters.
Each bucket contains a simple linked list L equipped with its
usual operations. If an item is not contained in the map, the
distinguished symbol ⋆ is returned.

The Hash Table Structure. We begin by giving a pseu-
docode description of a hash table (HT) in the syntax of [21]
in Figure 4. An instance of HT consists of m buckets,

each containing an (initially empty) linked list L, and a
mapping R between the universe Uκ of keys and [m].

A key-value pair (k, v) is inserted to the HT represen-
tation by computing R(K, k)=i and traversing to this i-th
bucket. We then check if the pair is already in the linked
list L stored there and delete the prior mapping if this is
the case. Finally, we insert the current pair into L. Likewise,
a key is deleted by searching in the bucket it maps to and
removing the key and its associated value from the linked
list L in the bucket if this pair exists there. Traditionally, it is
assumed that i = h(x), where h is a fast to compute hash
function with good (enough) collision resistance properties.
However, we generalize here to make the exposition cleaner,
and to allow for the mapping to depend upon secret ran-
domness (i.e., a key K). To query for a key for its associated
value, the algorithm QRY(qryk) searches the bucket k maps
to and returns the key-value pair if it exists there; otherwise
we return the distinguished null symbol ⋆.

Recall the average time for HT insertions, deletions,
and queries is constant. However, this is only when the
data inserted into the structure does not depend on the
choice of hash function used. This is not something we
can assume to be the case in the adversarial setting. We
will explicitly demonstrate this with a simple complexity
attack, but first we will give a formal notion of adversarial
expected performance that can be used to prove a particular
HT construction secure or reason about attacks against an
insecure construction.

A Notion of Adversarial Performance.
We define a notion of hash table adversarial run time

performance in Figure 5, to reason about the expected
performance of hash tables when the data they hold may
depend arbitrarily on the choice of hash function used to
distribute data to buckets. We call this the HT-Err experi-
ment. The experiment parameters u, v determine whether
the adversary A is given K and repr, respectively (as in
our CMS case study in 2.5). For our purposes, we will only
discuss situations when the representation is kept private
and consider only the keyed and unkeyed settings. As
before, we make hash functions “private” by keying them
with a (non-empty) randomly generated secret key.

The experiment starts by initializing an empty data-
object S , and randomly selecting a key K for the
REP, UP, QRY algorithms. Next, an initial representation repr
of the empty S is computed. The adversary is given access
to oracles that allow it to update the current representation
(Up) — in effect, to control the data inserted into the table —
and to make any of the queries permitted by the structure
(Qry). Note that when v = 0 (which we enforce to be true
for the rest of this discussion), the Up-oracle leaks nothing
about updated representation, so that it remains “private”
throughout the experiment. The adversary (and, implicitly,
REP, UP, QRY) is provided oracle access to a random ora-
cle Hash : X → Y , for sets X = {0, 1}∗,Y = [m].

We take count(·) to be a function that returns the
number of items that need to be visited in a linked list L of
a bucket during a call to one of the operations on the hash
table. For illustrative purposes, we designed the experiment
such that the adversary’s job is as hard as possible. That is, at
the end of the experiment, when all insertions are finished,
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Expht-err[u,v]
Π,U (A)

1 : S ← ∅
2 : K ←← K
3 : repr←← REPK(S)
4 : kv← ⊤; rv← ⊤
5 : if u = 1 : kv← K

6 : if v = 1 : rv← repr

7 : done←← AHash,Up,Qry(kv, rv)

8 : a← 0

9 : for s ∈ S
10 : a← a+ count(QRYK(repr, qrys))

11 : return [a =
|S|2 + |S|

2
∧ |S| = qU ]

Up(up)

1 : repr′ ←← UPK(repr, up)

2 : S ← up(S)
3 : repr← repr′

4 : if v = 0 : return ⊤
5 : return repr

Qry(qry)

1 : return QRYK(repr, qry)

Hash(X)

1 : if X ̸∈ X : return ⊥
2 : if H[X] = ⊥
3 : H[X]←← Y
4 : return H[X]

Fig. 5: HT-Err Experiment. The notion of hash table adversarial run time performance. When experiment parameter v = 1 (resp.
v = 0) then the representation is public (resp. private); when u = 1 (resp. u = 0) then the structure key K is rendered public (resp.
private). The experiment returns 1 if the total number of linked list accesses to query the adversarially generated insertion set S
is the worst-case amount, and 0 otherwise. The Hash oracle computes a random mapping X → Y (i.e., a random oracle), and is
implicitly provided to REP, UP and QRY.

we output 1 iff querying all the inserted keys touches the
maximal number of linked list entries. That is, the adversary
must craft a set of keys (and their associated values) such
that they all get stored in the same bucket. Formally, we
define the advantage of an HT-Err adversary as

Advht-err
u,v (A) = Pr[Expht-err[u,v](A) = 1]

and take Advht-err
u,v (t, qQ, qU , qH) as the maximum advantage

of any HT-Err adversary running in t time steps and mak-
ing qQ calls to Qry, qU calls to Up, and qH calls to Hash in
the ROM.

Insecurity in the Unkeyed Setting.

FloodAttackHash,Up,Qry(K)

1 : n← 0

2 : S ← ∅
3 : until n = qU

4 : y ←← Uκ
5 : if Hash(K, y) = 1

6 : S ← S ∪ {y}
7 : n← n+ 1

8 : for s ∈ S
9 : Up(up(s,v))

10 : return done

Fig. 6: Hash flood attack for the HT in public hash function set-
ting. We flood the first bucket in this particular attack. Further,
we assume v takes on some dummy value appropriate for the
context in which the attacks occur. The attack is parameterized
with the update and Hash query budget qU and qH .

We give an attack that trivially wins the HT-Err ex-
periment in Figure 6. Given Up budget qU to win the
game, we need to make exactly qU insertions such that
they all map to the same bucket. We do this by selecting
random y ∈ Uκ (from the universe of keys in the key-value

pairs), then calling Hash(K, y) and seeing if they map to the
target bucket (in this case, the first bucket). Once we have
selected exactly qU keys such that this is the case, we assign
them some arbitrary value appropriate for the context of the
attack, insert all the pairs, and announce done.

The adversary will win the HT-Err experiment game
with probability 1 if their Hash budget qH is large enough
to compute qU such keys that all map to a single bucket. We
can compute the expected number of call to Hash denoted η
as

E[η] = mqU (1−
1

m
)

from the negative binomial distribution. Having qH ≫ qU is
reasonable in practice, as hash computations are (generally
speaking) cheap and can be done entirely offline.

Security in the Keyed Setting.
We now make an informal claim about the security of

hash tables in the keyed setting.
Claim 1. The advantage of an adversary in the keyed set-
ting, Advht-err

0,0 (t, qQ, qU , qH), is close to that of probability of qU
randomly selected elements in the universe mapping to the same
bucket (i.e., the non-adaptive bound).

We leave a formalization of this claim as well as a
proof of it for future work. However, we give a few ideas
that one can use to sketch a proof and obtain a formal
advantage bound. We note that the adversary will never
make deletions, as it needs to reserve all of its Up budget
for strictly insertions to possibly win the game. Further, we
can leverage the indistinguishability from random of our
keyed primitive (concretely instantiated as, say, a PRF), to
replace the insertions of the adversary with those of random
elements. In essence, through a series of game hops, we can
whittle down the adversary’s adaptive ability and roll in the
non-adaptive bound. In this case, the non-adaptive bound
is simple, as it the probability that qU items go into 1 of m
equally probable buckets or precisely ( 1

m )qU .
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3.4 Open Problems
As shown above, provably demonstrating the security

of keyed hash tables (with a full theorem statement and
rigorous analysis) remains an open problem. It may also
be of interest to explore more flexible notions of security
that are more permissive in the winning condition of the
adversary, as these may align better to real-world deploy-
ment needs. Additionally, investigating attacks against hash
table variants beyond the simple separate chaining style [86]
presented here, such as open addressing [87] and cuckoo
hash variants [88], would be valuable. Lastly, it would be
vital to assess the feasibility of keying hash tables in real-
world deployments, in particular seeing if keyed hash tables
were robust to the timing attacks described in [81].

Studying skip lists from a provable security perspective
is another open problem. For instance, one could analyze
the “secure” splay list construction given in [85]. Moreover,
developing a general security model to encompass the
entire class of data structures vulnerable to complexity at-
tacks would be beneficial. Doing so would require formally
defining this class of structure, and likely identifying other
structures in this class.
4 VERIFIABLE DATA STRUCTURES
4.1 Verifiable Data Structures and Cryptographic Ac-

cumulators
The Merkle Tree [89], [90] is the ubiquitous example of

a verifiable data structure. It provides efficient and secure
verification of potentially large collection of data. It works
by ordering the collection of data as leaves in a tree and
recursively hashing pairs of data leaves (or, in higher levels
of the tree, intermediate hashes) until only a single root
hash remains (this being the commitment to the collection).
Verification proofs are then given by paths in the tree from
the data element being queried to this root hash. They can be
verified by a user recomputing the path. The security of the
verification property is directly related to the collision resis-
tance property of the hash function used. The representation
given by a Merkle tree is linear in space with respect to the
underlying data collection, while providing O(log n) proof
size, query time (for inclusion queries), and verification
time. Merkle trees can be used to verify the consistency of
data between two (or more) mutually distrusting parties,
such as done in blockchains [91]. Merkle trees also form
the basis of a number of verifiable certificate revocation
schemes[7], [8], [9], [10]. A theoretical analysis of verifiable
dictionaries using hash trees is given in [92].

A number of other works in the verifiable data struc-
tures space focus on making verifiable versions of specific
immutable data structures (e.g., dictionaries, trees, graphs,
etc.) [93], [84], [7], [94], [95]. There has also been work
done on crafting verifiable data structures which allow
for updates. Goodrich and Tammassia [84] give a mutable
verifiable dictionary that makes use of hierarchical hashing
over skip lists. This structure achieves the same efficiency
as immutable tree based constructions. This technique was
subsequently used to implement transparency logs for au-
diting of certificate authorities [96]. Other approaches to mu-
table verifiable data structures use an abstraction known as
dynamic cryptographic accumulators. Cryptographic accu-
mulators were first presented by Benaloh and de Mare [97].

Initially, accumulators allowed a user to verifiably query a
fixed set represented by the accumulator without revealing
the other elements in the base set. Barić and Pfitzmann [98]
generalized the notion of accumulators to provide collision-
free constructions that are necessary for many applications.
Subsequently, Camenisch and Lyskana [99] defined dy-
namic accumulators and provided an efficient construction
based on the RSA assumption. For a detailed overview of
cryptographic accumulators, we point the reader to [100].
Dynamic (i.e., mutable) verifiable dictionaries have been
constructed based on cryptographic accumulators [101],
[102]. Constructions based on accumulators provide con-
stant proof size and verification time, along with O(

√
n)

query and update time.
A formal abstraction for (mutable) verifiable data struc-

tures is given in [103]. They also provide definitions for
(what they call) “correctness” and “security”, that structures
of this class must satisfy. Roughly speaking, correctness de-
mands that honestly generated query responses must verify;
security requires that dishonestly produced responses will
not verify. This formalizes the notion of what is meant
by “verifiability”. Similarly, Miller et al. [104] present a
method for crafting verifiable data structures generically.
Specifically, they give a transformation that takes as input
a non-verifiable structure (selected from a large class of
structures) and outputs a verifiable version of the structure.
These works are an advancement in the field. Previously,
the study of verifiable data structures was limited to a
small subset of all possible data structures of interests, the
constructions were largely ad hoc, and the exact security
demands were relatively informal.
4.2 Zero-Knowledge Sets

Zero-knowledge sets (ZKS) extend strong privacy def-
initions to verifiable structures. A ZKS, as first presented
by Micali et al. in [105], is an immutable structure that
represents a set S ⊆ U for some universe U . A query
for x ∈ U returns the verifiable binary response x ∈ S
or x ̸∈ S via attaching a proof to the query response, without
revealing any other information about S – including the size
of the underlying set |S|.1 A ZKS construction must satisfy
well-defined completeness, soundness, and zero-knowledge
properties. Completeness states that any honestly answered
query from a well-formed representation can be verified.
Soundness states that no adversary can create conflicting
answers for any query that both verify. Zero-knowledge
captures the property of not discovering anything about
the underlying set (including its size) when a response is
received to a query (except the answer to the query) through
a standard computational zero-knowledge simulation defi-
nition.

Chase et al. [106] simplified the constructions of ZKS
by introducing a primitive called mercurial commitments.
Mercurial commitments extended standard cryptographic
commitments by providing soft commitments. Soft commit-
ments allow one to tease a commitment to any value after
the time of commitment. That is, they lack the traditional

1. The original work also presents zero-knowledge elementary
databases (key, value stores) where a query for some element x ∈ U
returns a corresponding value y ∈ R (for some response space R) such
that x → y (or ⊥ if key x is not contained in the database). We present
the special case of sets, where R = {0, 1}.
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binding property of cryptographic commitment schemes.
These mercurial commitments enable the initial construc-
tions of ZKS to be linear in the size of the set they represent
(under the assumption the set is sparse with respect to the
universe it is selected from), instead of linear in the size of
the universe. The representation grows (i.e., subparts of the
structure are generated on the fly) as queries are asked on
item that are not in the set to conserve the zero-knowledge
property.

Following the original paper, there have been a num-
ber of works that present additions and improvements to
the original ZKS construction. Gennaro and Micali [107]
presented independent-ZKS. Independent-ZKS enforce non-
malleability on the structure to prevent a man-in-the-middle
style attack, where an adversary could initialize a ZKS
correlated with that of some honestly initialized structure.
Liskov [108] created the first mutable ZKS construction.
However, they were unable to retain the soundness prop-
erties of the standard ZKS on query responses after updates
have been issued, as proofs for items that have been updated
may no longer be valid. Catalano et al. [109] introduced q-
mercurial commitments, which allowed for compact proofs
of non-membership (as compared to existing constructions).
Libert and Yung [110] extended this work to allow for the
same compactness on proofs of membership as well as non-
membership.
4.3 Case Study: Key Transparency

Key Transparency (KT) systems address the challenges
of public key distribution in end-to-end encrypted commu-
nication platforms. KT systems are crucial for preventing
trivial man-in-the-middle attacks. Traditionally, verifying the
authenticity of another party’s public key in secure commu-
nication systems required cumbersome processes like phys-
ical key exchanges or reliance on third-party authorities.
KT systems automate this process (without the need for a
trusted third-party), ensuring users that they are receiving
the correct public key, or at least one that is consistent with
what other users of the service are receiving, while pre-
serving privacy. While KT systems cannot prevent a service
provider from misbehaving, they ensure that any misbehav-
ior is quickly detectable. KT systems have not only attracted
significant academic interest, as evidenced by studies such
as [111], [112], [113], [114], [115], [116], but have also been
realized by platforms such as Keybase [117], Zoom [118],
Google [119], WhatsApp [120], Apple iMessage [121], and
Proton [122]. We will briefly describe how a KT system
functions, survey the prior academic research done on KT,
and discuss some lessons for researchers learned through
examining the history of KT systems.

A KT system is generally operated by the service
provider of a particular end-to-end messaging service. The
service provider maintains, a privacy-preserving verifiable
key directory, that is concretely instantiated as an ordered
append-only zero-knowledge set (aoZKS) [113], [116]. This
directory maps identifiers in the messaging service (e.g.,
usernames or phone numbers) to their corresponding public
keys. The directory gets updates over short time periods,
call epochs. During each epoch, the service provider collects
fresh key updates and appends them to the key directory.
The service provider then posts a signed commitment to the

state of the directory at a given epoch to a public bulletin
board. This ensures that all users of the system are able
to retrieve a consistent per-epoch commitment. Using this
commitment, users can then verifiably query the KT system
for other users’ public keys or verify their own key history.
Answers to queries should not reveal information about
any other identifier-key pairs held in the directory (except
for the one directly being queried). Users can complain
out-of-band if an unauthorized change to their key history
occurred during the preceding epoch, such as a fraudulent
public key being added to the key directory. Further, at
each epoch, auditors check to ensure that the commitment
and privacy-preserving verifiable map are consistent, and
that only key insertions occurred (no deletions are allowed).
This auditing process does leak anything about any of the
individual identifier-key pairs that exist in the directory,
only the number of pairs that exist in the directory, and
the number of updates that occurred during any particular
epoch. For a full description of KT systems, we point the
reader to [116].

CONIKS [111] was the first paper to describe and
address the problem of key transparency. The idea was
based on prior work on transparency logs for web certifi-
cates [123]. They presented a number of informal design
goals and a construction that was thought to meet these
goals. However, they did not present a formal abstraction
of a KT system or a formal specification of the privacy-
preserving verifiable key directory primitive. Moreover,
their construction was actually insecure for their stated
highest-level goal of “non-equivocation”. In their system,
the service provider did no post a signed commitment to
the latest version of the key directory to a public bulletin
board, instead opting to include a signed commitment with
each query response to each individual user. Therefore, the
service provider was able to serve diverging views of the
key directory to every user by not providing a way to obtain
a consistent commitment to the directory.

SEEMless [113] builds on the work of CONIKS by
formalizing a notion of a privacy-preserving verifiable key
directory (VKD) and formalizing the primitive it is built
upon – the aforementioned aoZKS. SEEMless provides
strong and explicit security definitions that a VKD and an
aoZKS construction must satisfy, and provably show that
their constructions succeed in doing so. They further point
out a previously unnoticed privacy leakage vulnerability in
CONIKS that their system solves. A number of subsequent
papers have taken the core ideas of SEEMless and extended
them. Notably, Parakeet [114] and OPTIKS [116] provide
more performant versions of the primitives first defined
in SEEMless to address scalability issues in real-world KT
deployments. Further, ELEKTRA [115] attempt to extend the
formalizations provided in SEEMless to easily support users
with multiple devices (and thus multiple public keys) in KT
deployments.

The history of KT systems in the academic literature
highlight a number of crucial cautionary points for applied
cryptography researchers. Firstly, it demonstrates the im-
portance of formal security definitions and the provable
security paradigm. The original KT system, CONIKS [111],
lacked formalization, leading to a number of glaring se-
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curity flaws. The provable security paradigm (using well-
defined and explicit assumptions) is essential for actually
guaranteeing the security of a protocol or primitive. This
serves as a reminder of the pitfalls of insufficient security
considerations, and the need for rigorous security analysis.

SEEMless [113], attempting to address these flaws, for-
malized KT systems. In doing so, they had to introduce a
new privacy-preserving verifiable data structure, the aoZKS.
The aoZKS deviates from the traditional ZKS in a num-
ber of ways. Unlike the ZKS (and most other verifiable
data structures in the literature), the aoZKS lacks implicit
trust assumptions. These traditional structures are presented
as three party protocols. The party that instantiates the
structure and commitment to the structure (as well as, if
allowed, handles updates) is trusted by the client(s), but the
responder is not. In KT systems, the party that maintains the
structure and responds to queries is the same – the service
provider. As a result, KT systems only have the guarantee
that afflicted users will be able to detect fraudulent updates,
and not outright prevent them. Consequently, aoZKS se-
curity definitions focus on the core operations of the data
structure (e.g., the update, query, and verify operations),
rather than relying on a trust model. This speaks to the
need to make security notions general and flexible, allowing
application designers to flesh out what the security defini-
tions imply to their specific use case, as opposed to limiting
the use of a cryptographic primitive due to unnecessary
assumptions.

Next, that aoZKS allows for greater leakage than the
traditional ZKS. The traditional ZKS does leak the size of the
set it represents. This requires that the representation must
be the size of the universe from which the set is selected (or
at least capable of expanding to this size, as in [106]). This
in impractical for many real-world applications that need
to store the representation on real hardware and efficiently
respond to queries. For example, the universe of all possible
public keys in an end-to-end encrypted chat application
is too large to enumerate. Moreover, it is generally not
considered sensitive to leak how many people use a specific
end-to-end encrypted chat system. Therefore, aoZKS relaxes
the privacy definition to allow for leaking the size of the set
being representing, while ensuring that the structure leaks
nothing about which specific identifier-key pairs exist in the
representation and that a query does reveal any identifier-
key pair except the one queried. It can be argued that the
ZKS is largely a theoretical construction, and thus it is
acceptable that it is not feasible to instantiate on real-world
infrastructure. However, researchers must consider when
their security notions are “too strong” and offer alternatives
or ideas on how to craft constructions applicable to real-
world deployments.

Finally, we note that KT systems had to address the
challenge of preserving soundness (i.e., verifiability) while
allowing updates. Recall, Liskov’s updatable ZKS [108]
lacked soundness guarantees after updates were made to
the structure. This lack of soundness is caused by the
implicit qualification of when a query is made. In other
words, a proof verifying a query response may not be valid
after an update is made, as that the value corresponding
to the proof may have changed. To retain a soundness

guarantee, the SEEMless paper encapsulates the aoZKS in a
higher abstraction – the VKD. The VKD includes a notion of
time (i.e., when updates and queries occur) through epochs.
VKDS ensure the soundness of query responses only for
the most recent epoch, thereby overcoming this issue of
when a query is made. This suggests researchers must being
willing to add more complexity to their abstractions and
constructions (only as strictly necessary), when seeking to
conserve security notions in more permissive settings.
5 CONCLUSION

We examined how the provable security paradigm has
been applied (or begs to be applied) to three different classes
of data structures. First, we surveyed the literature that
examines the adversarial correctness of various compact
probabilistic data structures. We also present a case study of
the Count-min sketch, summarizing the work of Markelon
et al. [43], to provide a detailed overview on how provable
security analysis is carried out for structures of this class.

Next, we highlighted the work done in exploring “com-
plexity attacks” against hash tables and skip lists. Several
works detail attacks that force worst-case runtime of these
structures in real-world applications. Noting a lack of for-
malization of these attacks and an absence of provable
security treatment of proposed countermeasures, we give
a case study showing how one might approach analyzing
secure hash tables constructions. Along the way, we also
highlighted open problems of interest for these two classes
of data structure.

Finally, we reviewed the body of research on verifi-
able data structures. Unlike the previous two classes of
data structures, these structures are designed with specific
security notions in mind. We concluded with a study on
key transparency systems, which use verifiable structures
to achieve their desired system goals. We note a mismatch
between the needs of key transparency systems, and the
security properties that are captured in the traditional ver-
ifiable structure literature. This serves as a reminder that
the provable security paradigm is not a “one-size-fits-all”
solution. Careful consideration is required when crafting
security notions and making assumptions about the envi-
ronments where primitives and protocols will be deployed.
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and distributed cryptographic accumulator,” in International Con-
ference on Information Security, pp. 372–388, Springer, 2002.

[102] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authen-
ticated hash tables based on cryptographic accumulators,” Algo-
rithmica, vol. 74, pp. 664–712, 2016.

[103] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal
verification of operations on dynamic sets,” in Advances in Cryp-
tology – CRYPTO 2011 (P. Rogaway, ed.), (Berlin, Heidelberg),
pp. 91–110, Springer Berlin Heidelberg, 2011.

[104] A. Miller, M. Hicks, J. Katz, and E. Shi, “Authenticated data
structures, generically,” ACM SIGPLAN Notices, vol. 49, no. 1,
pp. 411–423, 2014.

[105] S. Micali, M. Rabin, and J. Kilian, “Zero-knowledge sets,” in 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pp. 80–91, IEEE, 2003.

[106] M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin,
“Mercurial commitments with applications to zero-knowledge
sets,” in Advances in Cryptology–EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings
24, pp. 422–439, Springer, 2005.

[107] R. Gennaro and S. Micali, “Independent zero-knowledge sets,” in
International Colloquium on Automata, Languages, and Programming,
pp. 34–45, Springer, 2006.

[108] M. Liskov, “Updatable zero-knowledge databases,” in Advances
in Cryptology-ASIACRYPT 2005: 11th International Conference on
the Theory and Application of Cryptology and Information Security,
Chennai, India, December 4-8, 2005. Proceedings 11, pp. 174–198,
Springer, 2005.

[109] D. Catalano, D. Fiore, and M. Messina, “Zero-knowledge sets
with short proofs,” in Advances in Cryptology–EUROCRYPT 2008:
27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings 27, pp. 433–450, Springer, 2008.

[110] B. Libert and M. Yung, “Concise mercurial vector commitments
and independent zero-knowledge sets with short proofs,” in
Theory of Cryptography Conference, pp. 499–517, Springer, 2010.

[111] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and
M. J. Freedman, “{CONIKS}: Bringing key transparency to end
users,” in 24th USENIX Security Symposium (USENIX Security 15),
pp. 383–398, 2015.

[112] J. Bonneau, “Ethiks: Using ethereum to audit a coniks key trans-
parency log,” in International Conference on Financial Cryptography
and Data Security, pp. 95–105, Springer, 2016.

[113] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai, “Seem-
less: Secure end-to-end encrypted messaging with less trust,” in
Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security, pp. 1639–1656, 2019.

[114] H. Malvai, L. Kokoris-Kogias, A. Sonnino, E. Ghosh, E. Oztürk,
K. Lewi, and S. Lawlor, “Parakeet: Practical key transparency
for end-to-end encrypted messaging,” Cryptology ePrint Archive,
2023.

[115] J. Len, M. Chase, E. Ghosh, D. Jost, B. Kesavan, and A. Marce-
done, “Elektra: Efficient lightweight multi-device key trans-
parency,” in Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2915–2929, 2023.

[116] J. Len, M. Chase, E. Ghosh, K. Laine, and R. C. Moreno, “Op-
tiks: An optimized key transparency system,” Cryptology ePrint
Archive, 2023.

[117] A. Marcedone, “Key transparency at keybase and
zoom.” Presentation at IETF 116 Meeting, March 2023.
https://datatracker.ietf.org/meeting/116/materials/
slides-116-keytrans-keybase-and-zoom-00.pdf.

[118] J. Blum, S. Booth, B. Chen, O. Gal, M. Krohn, J. Len, K. Lyons,
A. Marcedone, M. Maxim, M. E. Mou, et al., “Zoom cryptography
whitepaper,” 2022.

[119] R. Hurst and G. Belvin, “google/keytransparency.” https://
github.com/google/keytransparency/, 2020.

[120] K. Lewi, “Whatsapp key transparency,” in Proceedings of the 2023
USENIX Conference on Privacy Engineering Practice and Respect
(PEPR ’23), (Santa Clara, CA), 2023.

[121] Apple Security Engineering and Architecture (SEAR), “imes-
sage contact key verification.” https://security.apple.com/blog/
imessage-contact-key-verification, 2023. Accessed: 2023-04-01.
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APPENDIX A
NOTATIONAL CONVENTIONS

Bitstring and Set Operations.
Let {0, 1}∗ denote the set of bitstrings and let ε denote

the empty string. Let X ∥Y denote the concatenation of
bitstrings X and Y . When S is an abstract data-object (e.g., a
(multi)set, a list) and e is an object that can be appended (in
some understood fashion) to S , we overload the ∥ operator
and write S ∥ e.

Let x ←← X denote sampling x from a set X according
to the distribution associated with X ; if X is finite and
the distribution is unspecified, then it is uniform. Let [i..j]
denote the set of integers {i, . . . , j}; if i > j, then define
[i..j] = ∅. For all m ≥ 2, let [m] = {1, 2, . . . ,m}.

Let A and B be sets. We take A ∪ B to be the union of
the sets, A ∩ B to be the intersection of the sets, and A \ B
to be set-theoretic difference of A and B.

Functions.
Let Func(X ,Y) denote the set of functions f : X → Y .

For every function f : X → Y , define IDf : {ε} × X → Y
so that IDf (ε, x) = f(x) for all x in the domain of f . This
allows us to use unkeyed hash functions H in situations
where, syntactically, a function is required to take a key
along with its input.

Arrays and Tuples.
We use the distinguished symbol ⋆ to mean that a

variable is uninitialized. By [item] × ℓ for, ℓ∈N we mean
a vector of ℓ replicas of item. We use zeros(m) to denote a
function that returns a m-length array of 0s and, likewise,
zeros(k,m) to denote a function that returns an k×m array
of 0s. We index into arrays (and tuples) using [·] notation;
in particular, if R is a function returning a k-tuple, we
write R(x)[i] to mean the i-th element/coordinate of R(x).
If X=(x1, x2, . . . , xt) is a tuple and S is a set, we overload
standard set operators (e.g., X ⊆S) treating the tuple as a
set; if we write X \ S , we mean to remove all instances of
the elements of S from the tuple X , returning a tuple X ′

that is “collapsed” by removing any now-empty positions.

https://datatracker.ietf.org/meeting/116/materials/slides-116-keytrans-keybase-and-zoom-00.pdf
https://datatracker.ietf.org/meeting/116/materials/slides-116-keytrans-keybase-and-zoom-00.pdf
https://github.com/google/keytransparency/
https://github.com/google/keytransparency/
https://security.apple.com/blog/imessage-contact-key-verification
https://security.apple.com/blog/imessage-contact-key-verification
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APPENDIX B
A SYNTAX FOR DATA STRUCTURES

We present (a slightly modified) syntax for data struc-
tures first provided by [21]. While originally used to de-
scribe a variety of probabilistic data structures, the syntax
is appropriately general. A syntactic formalization of data
structures in this way not only allows us to elegantly
describe numerous data structures, but also craft security
definitions that are directly related to the operations the data
structure allows. We will do exactly this in our case studies
throughout the rest of this work.

We start by fixing three non-empty sets D,R,K of data
objects, responses and keys, respectively. Let Q ⊆ Func(D,R)
be a set of allowed queries, and let U ⊆ Func(D,D) be a
set of allowed data-object updates. A data structure is a tuple
Π = (REP, QRY, UP), where:
• REP : K×D → {0, 1}∗ ∪{⊥} is a (possibly) randomized

representation algorithm, taking as input a key K ∈ K and
data object S ∈ D, and outputting the representation
repr ∈ {0, 1}∗ of D, or ⊥ in the case of a failure. We
write this as repr← REPK(S).

• QRY : K × {0, 1}∗ × Q → R ∪ {⊥} is a deterministic
query-evaluation algorithm, taking as input K ∈ K, repr ∈
{0, 1}∗, and qry ∈ Q, and outputting an answer a ∈
R, or ⊥ in the case of a failure. We write this as a ←
QRYK(repr, qry).

• UP : K × {0, 1}∗ × U → {0, 1}∗ ∪ {⊥} is a (possibly)
randomized update algorithm, taking as input K ∈ K,
repr ∈ {0, 1}∗, and up ∈ U , and outputting an updated
representation repr′, or ⊥ in the case of a failure. We
write this as repr′ ← UPK(repr, up).
Allowing each of the algorithms to take a key K

permits one to separate (for some security notion) any
secret randomness used across data structure operations,
from per-operation randomness (e.g., generation of a salt).
Note that this syntax admits the common case of unkeyed
data structures, by setting K = {ε}. Moreover, we can set
K = priv to be a private key and allow the corresponding
public key pub to be a public parameter in the case the data
structure relies on asymmetric cryptographic primitives.

Both REP and the UP algorithm can be viewed (in-
formally) as mapping data objects to representations —
explicitly so in the case of REP, and implicitly in the case
of UP — so we allow UP to make per-call random choices,
too.

Note that UP takes a function operating on data objects
as an argument, even though UP itself operates on represen-
tations of data objects. This is intentional, to match the way
these data structures generally operate. In a data structure
representing a set or multiset, we often think of performing
operations such as ‘insert x’ or ‘delete y’. When the set
or multiset is not being stored, but instead modeled via
a representation, the representation must transform these
operations into operations on the actual data structure it is
using for storage. This is common for operation on proba-
bilistic data structures.

We also note that the query algorithm QRY is deter-
ministic, which reflects the overwhelming majority of data
structures in practice. Allowing QRY to be randomized
would allow for a greater degree of syntactic expressiveness,

particularly for some data structures that provide privacy
guarantees. However, it can make it more difficult to craft
correctness properties in that it may be difficult to discern
the errors caused by an adaptive adversary versus “in-
tended” error arising from the randomized query algorithm.
Care must be taken when both designing structures and
defining security properties to ensure issues do not arise
from this.

Further, while the syntax from [21] that we present
above is highly expressive, it may not capture all data
structures one may want to examine. For instance, an ver-
ifiable data structure [6] may require some changed to the
functional definitions, as well as the addition of a verification
function VFY that would act to verify proofs to query
responses. Lastly, we note that the syntax does not support
describing (nor is it clear how to easily modify the syntax
to be able to support) what could be viewed as distributed
data structures, such as blockchains and distributed hash
tables. This is not the focus of this work, and we point to
the reader [124] and [125], respectively, if interested in such
areas.
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