Secure Data Structures
Thesis Proposal

Sam A. Markelon
University of Florida
smarkelon@ufl.edu

October 2024

1 Introduction

Data structures define representations of possibly dynamic (multi)sets, along with the operations
that can be performed on this representation of the underlying data. Efficient data structures are
crucial for designing efficient algorithms [I]. The development and analysis of data structures has
largely been driven by operational concerns, e.g., efficiency, ease of deployment, support for broad
application. Security concerns, on the other hand, have traditionally been afterthoughts (at best).
However, recent research has highlighted that many widely-used data structures do not behave
as expected when in the presence of adversaries that have the ability to control the data they
represent. Further, complex protocols that have sophisticated security goals are increasingly using
a variety of bespoke data structures as fundamental components of their design. Therefore, it is
wise to begin applying the provable security paradigm to data structures themselves.

For instance, consider probabilistic data structures (PDS). They provide compact (sublinear)
representations of potentially large collections of data and support a small set of queries that
can be answered efficiently. Prime examples of such structures include the Bloom filter [2], the
HyperLogLog [3], and the Count-min Sketch [4]. These space and (by extension) performance
gains come at the expense of correctness. Specifically, PDS query responses are computed over
the compact representation of the data, as opposed to the complete data. As a result, PDS query
responses are only guaranteed to be close to the true answer with large probability, where close and
large are typically functions of structure parameters (e.g., the representation size) and properties
of the data. These guarantees are stated under the assumption that the data and the internal
randomness of the PDS are independent. Informally, this is tantamount to assuming that the
entire collection of data is (or can be) determined before any random choices are made by the
PDS. For many PDS, this means before some number of hash functions are sampled, as the PDS
operates deterministically after that. Recent works have begun to explore the impact on correctness
guarantees for data that may depend upon the internal randomness of the structure, and the initial
findings are negative.

Moreover, consider the class of data structures we refer to as skipping data structures. Unlike
the probabilistic data structures we discussed earlier, this class of structure are not space-efficient
(compact) and, in turn, give exact answers to queries. These data structures (e.g., hash tables,
skip lists, and treaps) offer fast average-case runtime of their operations, but have worst-case
runtime that is poor. They achieve this by using some form of randomness to determine the



representation of the underlying data collection. Recent research shows that adaptive adversaries
are able to force worst-case runtime for these structure, often demonstrated by attacks on real-world
systems. Therefore, instead of focusing on adversarial correctness as in the PDS section, we focus
on preserving the expected run time of these structures with large probability in the presence of
an adversary.

Lastly, we consider verifiable data structures. Unlike the previous two classes of data structures
we consider, these structures are designed with specific and explicit security notions in mind. While
verifiable (or authenticated) data structures have existed in the literature for decades [5], we are
specifically interested in the use of verifiable data structures in the context of key transparency
systems. Informally, key transparency systems are employed by end-to-end messaging systems
with large user bases to automatically ensure users are getting the correct public key of another
user they wish to communicate with. We explore a mismatch between the needs of large-scale key
transparency systems, and the security properties that are captured in the traditional verifiable
structure literature. We also explore how a novel privacy-preserving summary mechanism can be
used to solve scalability issues with current deployments.

These results illustrate the need to rigorously analyze the security properties of certain classes
of data structures, thus we put forth the following thesis statement:

1.1 Thesis Statement

The security properties of data structures have largely been an afterthought (at best). To formal-
ize the behavior of these structures (and the upstream applications that use them) in adversarial
environments, it is necessary to employ the provable security paradigm in their analysis.

2 Background

We now provide a brief summary of related work for the classes of data structures that we focus
on.

2.1 Probabilistic Data Structures
2.1.1 Approximate Set Membership Data Structures

The first works to explore PDS in a provable security style focused on the Bloom filter [2]. The
Bloom filter admits approximate set-membership queries. The structure is widely used in many
computing contexts, such as databases [6], networking [7], distributed systems [§], and search [9].

Naor and Yogev were the first to consider settings in which inputs and queries may be chosen by
an adaptive adversary and formally investigate attacks that can occur in such a setting [I0]. Their
results show that adversaries can find queries that are guaranteed to be false positive for a given
instantiation of a filter and data collection. They formalized a notion of adversarial correctness for
a modified Bloom filter structure of their own construction and provide a correctness bound for
it. Clayton et al. [I1] extend this work by considering stronger adversaries. They allow for the
adversary to insert elements into the structure after the adversary has started to issue queries —
that is, they consider a fully mutable setting. They find that the basic Bloom filter is vulnerable
to adversarial manipulation, which can increase false positives to nearly 100%. To secure it, they
recommend adding a unique salt in an immutable setup, or using a private representation, keyed
hash functions, and insertion thresholds in a mutable setting. Further, they formalize a notion of



adversarial correctness that extends past only Bloom filters, also concretely analyzing the counting
filter [12] and the Count-min sketch [4]. Fili¢ et al. [L3] further analyze the adversarial correctness of
Bloom filters and Cuckoo filters (another approximate membership data structure) in a simulation
style security notion. They reach similar conclusions to [I1].

2.1.2 HyperLogLog

The HyperLogLog (HLL) [3] is a PDS that provides a compact representation of a set and can
accurately approximate the number of distinct elements in the set (i.e., the set’s cardinality).
Patterson and Raynal [14] provide a provable security treatment of the HLL. They first present
attacks which exploit the use of fixed and publicly computable hash function in the HLL to cause
large cardinality estimate errors. They then show that by switching these hash functions for
a secretly keyed primitive that (even in the setting where an adversary has complete access to
the internal state of the structure) the structure remains secure in terms of conserving the non-
adversarial correctness guarantees of the structure. Prior to this, Revirigeo and Ting provide
attacks against the HLL in a model where the adversary has access to a “shadow” device that
mirrors the structure that is being attacked [I5]. Patterson and Raynal point out this setting in
unrealistic, but nonetheless improve the attack in this model.

2.1.3 Compact Frequency Estimators

Compact frequency estimators are a class of PDS that compactly represent a collection of streaming
data (usually modeled as a multiset), and provide approximately correct frequency estimates (that
is, the number of times any particular element has appeared in the stream). Alternately, com-
pact frequency estimators can be viewed as providing a compact representation of the frequency
distribution of a particular data stream.

As previously stated, Clayton et al. were the first to examine compact frequency estimators
from a provable security perspective [I1]. They specifically examined the Count-min sketch and
presented attacks that could cause large frequency estimation error when the internals state of
the structure or the hash functions used by the structure were made available to the adversary.
They were able to prove security of the structure when the internal state of the structure is kept
private and a secretly keyed primitive was used in place of the usual hash functions. However,
their defined adversarial goal was very conservative. Any fixed amount of frequency estimation
error was considered a win for the adversary, rather than an accumulated error that surpassed that
of the non-adversarial correctness guarantee. Further, their construction relied on a thresholding
technique, in which the structure would not accept any more updates after a bounded number of
insertions.

We continued on this line of work in our 2023 ACM CCS Paper Compact Frequency Estimators
in Adversarial Settings [16]. We detail this work in Section Further, we explore attacks against
actual implementations of PDS in Probabilistic Data Structures in the Wild: A Security Analysis
of Redis [17]. This work will soon be in submission, and we describe it in Section

2.2 Skipping Data Structures

We take skipping data structures to mean non-compact (i.e., they are linear in the size of the
collection they represent) structures that use some form of randomness to provide fast expected
run times (sublinear) in their core operations. For instance, consider the hash table (with expected



constant run-time for insertion, deletion, and search) or the skip list (with expected O(logn) run-
time for insertion, deletion, and search). However, in the case of the hash table, this average-case
performance is based on the assumption that the data inserted into a hash table is independent
of the (possibly random) choice of hash function used to map key-values pairs to buckets. In the
case of the skip list, this average case performance is based on the assumption that random choices
taken at insertion time are not manipulated by (targeted) subsequent deletion operations.

Many previous works have examined how to exploit a bad choice of hash functions to force
operations to degrade to the worst-case performance, O(n) where n is the total number of elements
residing in the structure. Crosby and Wallach [I8] investigate denial-of-service (DoS) attacks against
a number of applications that internally use hash tables to process and store data. The authors show
that by selecting input data such that all the elements hash to the same bucket, performance of the
upstream application can be degraded. Their attacks rely on the use of weak (non-cryptographic)
and fixed hash function. Specifically, they were able to cause the Bro network-intrusion detection
system [19] to fail by overloading the system, causing it to drop all network traffic for a large period
of time. Similarly, Klink and Walde [20] present attacks that caused web applications servers to
use 99% of their CPU for prolonged lengths of time by only sending a single carefully crafted
HTTP request. These attacks also exploited a bad choice of hash functions in the implementations
of hash tables in many common programming languages (PHP, ASP.NET, Java, etc.) that caused
worst-case performance on targeted web servers.

Follow-up work by Aumasson et al. [21] showed further vulnerabilities in many programming
languages’ default hash table implementations. This was done by analysis of the commonly used
non-cryptographic MurmurHash2, MurmurHash3, and CityHash64 hash functions [22], leading to
efficient algorithms for generating arbitrary multi-collisions in all cases. SipHash [23], a pseudoran-
dom function designed to be fast for short-inputs, was proposed as an alternative that prevented
these attacks and has been adopted by many of the affected programming languages. While this
fix seems to work in practice [24], (to our knowledge) no formalization concerning the provable
security of these secretly keyed hash tables exist.

A skip list [25] is a data structure that uses a randomized storage technique for efficient
insertion, deletion, and search on an ordered sequence of elements. As opposed to balanced trees,
skip lists are faster on real hardware, more space efficient, and less complex to implement, while
possessing the same asymptotic average runtime (O(logn) for all operations). Upon an element’s
insertion into the structure, the element is assigned a random height from one up to some max
height, with higher heights being increasingly less probable. This randomized height mechanism
allows one to efficiently skip over a number of elements when conducting a search on the ordered
data by starting a search at the maximum height and only traversing down heights (where a larger
proportion of elements reside) as necessary.

The original skip list paper [25] notes that an adversarial user can force worst-case runtime
for the operations of a skip list (O(n) for all operation) if they had access to the heights of the
elements in the structure. The attack is simple; an adversary only needs to delete any element with
height greater than 1. This degenerates the list by flattening it and removing the possibility of any
skips occurring when a search is performed (which is also the core suboperation for both insertion
and deletion). Thus, it is crucial to keep the internal structure of a skip list private to prevent this
attack. However, recent work by Nussbaum and Segal [26] show that the internal structure of a
skip list can be discovered even if kept private through timing attacks. By issuing a series of search
queries, an attacker is able to correlate the height of an element with the time taken to respond.
Once the heights of elements contained in the structure are discovered, the attacker then simply



carries out the attack described in the original paper. The authors suggest a structure called a
splay skip list, that randomizes the heights of the elements during a search query, to prevent this
attack, but provide no formalization of its security.

In ongoing work called Skipping Data Structures in Adversarial Environments, we create a
novel security model for skipping data structures based on conserving desirable properties of the
representation that structure maintains in adversarial conditions. Further, we introduce provably
secure and efficient constructions for hash tables and skip lists. To our knowledge, we are the first
to provide a provable security style treatment to skipping data structures. We detail this work in

Section 1]

2.3 Verifiable Data Structures and Key Transparency

Verifiable data structures assume a model in which a trusted source creates a data structure from
some initial data collection, and publishes a commitment (or more generally, public verification
information) to it. The structure is then given to a query-responding party, who is not assumed
(by clients, anyway) to be honest. Clients can then make queries to this untrusted responder, and
verify the validity of the response (with respect to the honestly generated representation) using the
published commitment. This verifiable structure paradigm is useful when a data collection is being
replicated over many responders (for, say, efficiency and security reasons) and these responders
have incentives to be dishonest. Some applications where these structures have been employed
include certificate revocation[27, 28], 29, 30] and downloading content from (untrusted) internet
mirrors [31), 32].

The Merkle Tree [33, 34] is the ubiquitous example of a verifiable data structure. It provides
efficient and secure verification of a potentially large collection of immutable data. A number of
other works in the verifiable data structures space focus on making verifiable versions of specific
immutable data structures (e.g., dictionaries, trees, graphs, etc.) [35, 86, 27, 37, [38]. There has also
been work done on crafting verifiable data structures which allow for updates [36], 39, 40]. A formal
abstraction for (mutable) verifiable data structures is given in [4I], and a method for crafting
verifiable data structures generically is presented in [42]. Lastly, there has been a line of work
exploring zero-knowledge sets, which extended strong privacy guarantees to verifiable structures [43),
44, 145, 46, 47, [43).

We are particularly interested in the use of verifiable data structures in the context of Key
Transparency (KT) systems. KT systems address the challenges of public key distribution in end-
to-end encrypted communication platforms and are crucial for preventing trivial man-in-the-middle
attacks. This has traditionally been a cumbersome process that requires physical meetings between
users that wish to authenticate themselves to one another. They make use of a privacy-preserving
verifiable key directory data structure, that is concretely instantiated as an ordered append-only
zero-knowledge set [49] [50].

We explore how to solve scalability challenges in KT deployments in ongoing work Solving
Scalability for Key Transparency Systems via a Privacy-Preserving Verifiable Summary Mecha-
nism. This is detailed in Section We also explore a planned follow-up work that generalizes
the verifiable summary mechanism, entitled Compact, Private, and Verifiable Data Structures, in

Section .3l



3 Completed Work

3.1 Compact Frequency Estimators in Adversarial Environments
The following is a summary of our work presented at ACM CCS 2023 [16].

In this work, we focus on PDS that can be used to estimate the number of times any partic-
ular element = appears in a collection of data, i.e., the frequency of x. Such compact frequency
estimators (CFEs) are commonly used in streaming settings, to identify elements with the largest
frequencies — so-called heavy hitters or elephants. Finding extreme elements is important for
network planning [51], network monitoring [52], recommendation systems [53], and approximate
database queries [54], to name a few applications.

The Count-min Sketch (CMS) [4] and HeavyKeeper (HK) [55] structures are two CFEs that we
consider, in detail. The CMS structure has been widely applied to a number of problems outlined
above. Details on these applications are thoroughly examined in the survey paper by Sigurleifsson
et al. [56]. The HK structure is the CFE of choice in the RedisBloom module [54], a component of
the Redis database system [57].

Of particular interest to us is the 2019 ACM SIGSAC work of Clayton, Patton, and Shrimp-
ton [II] that both furthers the adversarial analysis on Bloom filters and also presents a general
model for analyzing probabilistic data structures for provable security. This paper gives a first look
at the security of the Count-min sketch in adversarial environments. However, in this paper a very
conservative security model for the CMS was used, which counted any overestimation of a partic-
ular element as an adversarial gain, rather than tying the security to the non-adaptive guarantees
of the structure. Further, a thresholding mechanism is used to achieve security for the CMS, a
solution which we deem untenable for real world uses of the CMS.

As is the case for other PDS, the accuracy guarantees for CFEs effectively assume that the
data they represent were produced by a non-adaptive strategy. Our work explores the accuracy of
CMS and HK estimates when the data is produced by adaptive adversarial strategies (i.e., adaptive
attacks). We give explicit attacks that aim to make as-large-as-possible gaps between the estimated
and true frequencies of data elements. We give concrete, not asymptotic, expressions for these gaps,
in terms of specific adversarial resources (i.e., oracle queries), and support these expressions with
experimental results. And our attacks fit within a well-defined “provable security”-style attack
model that captures four adversarial access settings: whether the CFE representations are publicly
exposed (at all times) or hidden from the adversary, and whether the internal hash functions are
public (i.e., computable offline) or private (i.e., visible only, if at all, by online interaction with the
structure).

In this work we draw explicit attention to the fact that probabilistic data structures, and in
particular frequency estimators, were not designed with security in mind by presenting attacks that
degrade the correctness of the query responses these structures provide.

Our findings are negative in all cases. No matter the combination of public and private, a well
resourced adversary can force CMS and HK estimates to be arbitrarily far from the true frequency.
As one example of what this means for larger systems, things that have never appeared in the
stream can be made to look like heavy hitters (in the case of CMS), and legitimate heavy hitters
can be made to disappear entirely (in the case of HK). This is somewhat surprising in the “private-
private” setting, where the attack can only gain information about the structure and its operations
via frequency estimate queries. Of course, there are differences in practice: when attacks are forced



to be online, they are easier to detect and throttle, so the query-resource terms in our analytical
results are likely capped at smaller values than when some or all of an attack can progress offline.

Our attacks exploit structural commonalities of CMS and HK. At their core, each of these
processes incoming data elements by mapping them to multiple positions in an array of counters,
and these are updated according to simple, structure-specific rules. Similarly, when frequency esti-
mation (or point) queries are made, the queried element is mapped to its associated positions, and
the response is computed as a simple function of values they hold. So, our attacks concern them-
selves with finding cover sets: given a target x, find a small set of data elements (not including x)
that collectively hash to all the positions associated with x. Intuitively, inserting a cover set for x
into the stream will give the structure incorrect information about x’s relationship to the stream,
causing it to over- or underestimate its frequency.

The existence of a cover set in the represented data is necessary for producing frequency
estimation errors in HK, and both necessary and sufficient in CMS. Sadly, our findings suggest
that preventing an adaptive adversary from finding such a set seems futile, no matter what target
element is selected. The task can be made harder by increasing the structural parameters, but this
quickly leads to structures whose size makes them unattractive in practice, i.e., linear in the length
of the stream.

Motivating a more robust CFE Say that the array M in CMS has k rows and m counters
(columns) per row. The CMS estimate for z is 71, = min;e[{ M[i][p;]}, where p; is the position in
row ¢ to which x hashes. In the insertion-only stream model it must be that n, > n,, where n, is
the true frequency of z. To see this, given an input stream S, let Vi = {y € S|y # z and h;(y) =
pi} be the set of elements that hash to the same counter as z, in the i-th row. Then we can
write Mli][p;] = na + 32,y ny, where the ny > 0 are the true frequencies of the colliding ys.
Viewed this way, we see that the CMS estimate n, minimizes the impact of “collision noise”, i.e.,

We could improve this estimate if we knew some extra information about the value of the sum,
or the elements that contribute to it.

Let’s say that, with a reasonable amount of extra space, we could compute C; = ¢; (Zyevi ny>
for some ¢; € [0,1] that is bounded away from zero. Then we would improve the estimate to
iz = Ny +mingepy {(1 —€) (Zyevi ny> } How might we do this? Consider the case that for some

row i € [k] there is an element y* € V! that dominates the collision noise, e.g. n,« = (1/2) > yevi Ny
Then even the ability to accurately estimate n,+ would give a significant improvement in accuracy
of n,, by setting C; to this estimate. It turns out that HK provides something like this. It
maintains a k x m matrix A, where Ai][j] holds a pair (fp, cnt). In the first position is a fingerprint
of the current “owner” of this position, and, informally, cnt is the number of times that A[i][j]
“remembers” seeing the current owner. (Ownership can change over time, as we describe in the
body.) If we use the same hash functions to map element x into the same-sized M and A, then
there is possibility of using the information at A[i][p;] to reduce the additive error (w.r.t. n,) in
the value of M[i|[p;]. This observation forms the kernel of our new Count-Keeper structure.

The Count-Keeper CFE We propose a new structure that, roughly speaking, combines equally
sized (still compact) CMS and HK structures, and provide analytical and empirical evidence that
it reduces the error (by at least a factor of two) that can be induced once a cover set is found.
It also requires a type of cover set that is roughly twice as expensive (in terms of oracle queries)



to find. Moreover, it can effectively detect when the reported frequency of an element is likely to
have large error. In this way we can dampen the effect of the attacks, by catching and raising a
flag when a cover set has been found and is inserted many times to induce a large frequency error
estimation on a particular element.

Intuitively, our Count-Keeper (CK) structure has improved robustness against adaptive attacks
because CMS can only overestimate the frequency of an element, and HK can only underestimate
the frequency (under a certain, practically reasonable assumption). We experimentally demonstrate
that CK is robust against a number of attacks we give against the other structures. Moreover, it
performs comparably well if not better than the other structures we consider in frequency estimation
tasks in the non-adversarial setting.

As a side note, we uncovered numerous analytical errors in [55] that invalidate some of their
claims about the behaviors of the HK structure. We have communicated with the authors of [55]
and contacted Redis, whose RedisBloom library implements HK (and CMS) with fixed, public hash
functions (i.e., the internal randomness is fixed for all time and visible to attackers).

3.2 Probabilistic Data Structures in the Wild: A Security Analysis of Redis

The following is a summary of our work that is currently available on ePrint [I7]. It will soon be
in submission at an appropriate venue.

Probabilistic data structures (PDS) are becoming ubiquitous in modern computing applications
that deal with large amounts of data, especially when the data is presented as a stream. Their key
property in this setting is that they provide approximate answers to queries on data without needing
to store all the data. For example, a user may wish to estimate the cardinality of a datastream (in
which case the HyperLogLog cardinality estimator could be used), find the most frequent elements
in the stream (in which case a so-called top-K PDS is available), or just ask whether a particular
data item has been seen before in the stream (where Bloom and Cuckoo filters are the tool for the
job). Many modern data warehousing and processing systems provide access to PDS as part of
their functionality.

A prominent example of such a system is Redis, a general purpose, in-memory database. Redis
is integrated into general data analytics and computing platforms offered by AWS, Google Cloud,
IBM Cloud, and Microsoft Azure, amongst others. Redis supports a variety of PDS: HyperLoglLog
(HLL), Bloom filter, Cuckoo filter, t-digest, Top-K, and Count-Min sketch [58]. While Redis was
mostly used as a cache in the past, it is now a fully general system, used by companies like
Adobe [59], Microsoft [60], Facebook [61] and Verizon [62] for a variety of purposes. These include
security-related applications, such as traffic analysis and intrusion detection systems [63].

As the functionality of Redis has broadened, so has its maturity with respect to security.
Initially, the Redis developers stated that no security should be expected from Redis: The Redis
security model is: “it’s totally insecure to let untrusted clients access the system, please protect it
from the outside world yourself” [64]. In reality, users failed to comply with this [65]. Today, Redis
has a number of security features, and has adopted a different model, with a protected mode as
default, user authentication, use of TLS, and command blocklisting amongst other features [66].
Redis now also recognize security and performance in the face of adversarially-chosen inputs as being
a valid concern, stating that “an attacker might insert data into Redis that triggers pathological
(worst case) algorithm complexity on data structures implemented inside Redis internals” and then
going on to discuss two potential issues, namely hash table exhaustion and worst-case sorting



behavior triggered by crafted inputs [66]. The first issue is prevented in Redis by using hash
function seeding; the second issue is not currently addressed. However, Redis’ consideration of
malicious inputs does not seem to extend to their PDS implementations.

Given its prominence in the marketplace and the many other systems that rely on it, we
contend that the PDS used in Redis are deserving of detailed analysis. Moreover, in view of the
broad set of use cases for these PDS, including those where adversarial interference is anticipated
and would be damaging if successful, this analysis should be done in an adversarial setting. This
approach follows a line of recent work on PDS analysis [67, [68, 69, [70, [71, [72]. In this paper,
we make a comprehensive security analysis of the suite of PDS provided by Redis, with a view
to understanding how its constituent PDS perform in adversarial settings. As argued in [73], we
regard the observation, documentation, and analysis of such security phenomena “in the wild” as
constituting scientific contributions in their own right.

Following prior work, we assume only that the adversary has access to the functionality pro-
vided by the PDS (eg. via the presented API). The adversary’s aim is then to subvert the main goal
of the specific PDS under study. We deliberately remain agnostic about precisely which application
is running on top of Redis, since the relevant applications will change over time and are anyway
largely proprietary. The real-world effects of a successful attack will vary across applications, but
might include, for example, false statistical information being presented to users (in the case of
frequency estimation), wrongly reporting the presence of certain data items in a cache (in the case
of Bloom filters or Cuckoo filters) leading to performance degradation, or the evasion of network
attack detection (in the case of cardinality estimation being used in network applications). Instead
of making application-specific analyses, we focus on the core PDS functionalities in Redis and how
their goals can be subverted in general. Naturally, our analyses are specific to each of the different
PDS supported in Redis, and depend on various low-level implementation choices made by Redis.
These choices lead us to develop novel attacks that are more powerful than the known generic
attacks against the different PDS in Redis.

Since HLL in Redis was already comprehensively studied in [14], we do not consider it further
here. We note only that [I4] showed how to manipulate data input to Redis HLL to distort
cardinality estimates in severe ways, in a variety of adversarial settings.

The t-digest is a data structure first introduced in [74]; it uses a k-means clustering tech-
nique [75] to estimate percentiles over a collection of measurements. The structure is an outlier
in the Redis PDS suite as it does not work in the streaming setting, but necessitates the batching
of data in memory, and it is not really probabilistic in the same sense as the other PDS in Redis.
For these reasons, we omit a security evaluation of t-digest (both in general and in the case of the
Redis implementation).

This leads us to focus on the remaining four PDS in Redis: Bloom filter, Cuckoo filter, Top-K,
and Count-Min sketch. For each PDS, we discuss how the PDS was originally described in the
literature and lay out how the Redis implementation differs from this “theoretical” description. We
then develop attacks for each of these four PDS, with the attacks in most cases exploiting specific
features of the Redis implementations and being more efficient for this reason (simultaneously, we
have to deal with the many oddities of the Redis codebase in our attacks). In total, we present
10 different attacks across the four PDS. We compare our attacks with known attacks for these
PDS from the literature. We also look at how the PDS in Redis can be protected against attacks,
drawing on existing literature that considers this question for PDS more generally [11], 13} 14 [72].

We give a brief flavour of our attacks on the Redis PDS suite. For the Bloom filter implemen-



tation, we show how to make any target data item a false positive with few insertions. For the
Cuckoo filter, we show how to launch an attack that disables insertions after only a few insertions
have been made, far fewer than the filter’s expected capacity. For Count-Min sketch, we can inflate
the frequency estimate of any target data item to any target level. For Top-K, we can block the
PDS from reporting the true K most frequent data items in a stream.

4 Proposed Work

4.1 Skipping Data Structures in Adversarial Environments

Recall the attacks that involve exploiting weak choices of hash functions to force worst-case run
time behavior in hash tables, and the attacks that exploit knowledge of the random choice of height
of an element in a skip list to degenerate the structure. While many papers have explored various
attacks and proposed a number of possible mitigations, we are the first to formalize a security
model for this class of structure and provide efficient and secure constructions for the hash table
and skip list in this model.

Our goal is to capture the average-case run time of operations skipping data structures being
conserved in the face of an adaptive adversary that can control the data being represented by the
structure. Loosely, the average-case run time of skipping data structures is related to how data is
“distributed” in the representation. For instance, an ideal hash table would distribute the elements
it represents equally among the buckets. Analogously, ideal ordered structures (e.g., a skip list or
a treap) would resemble a balanced tree. If a data collection was fixed, and we ignored a desire
for efficiency, one could always craft an ideal representation with respect to the runtime of queries.
For a hash table, one could find a hash function that equally distributes the fixed collection to its
buckets. For a fixed-ordered structure, one could simply assign the heights (depths) of elements such
that the shortest possible search paths are guaranteed, as in a perfectly balanced tree structure.

However, skipping structures are used in a mutable setting. For this reason (and for efficiency),
skipping data structures use some form of randomness to process updates dynamically and in turn
update their representation. Hash tables select a random hash function to map elements to buckets,
and (generally) the ordered skipping structures flip coins at insertion time to determine the height
of an element. These processes have been shown (with high probability) to yield representations of
a dynamic data collection that are “close” to the ideal representations. Hash tables are analyzed
using standard ball-and-bin arguments. Assuming a collision-resistant hash function and a load
factor such that n ~ b (i.e., the size n of the data collection stored is about equal to the number b of
buckets), it is known [76] that with probability p = 1—% that at any point in time no bucket has more

than 3; og)il;b‘ This maximum bucket population bounds directly corresponds with the maximum
insertion, deletion, or query time of a subsequent operation. Likewise, the search cost path of any
element queried to a skip list has been shown with high probability to not exceed O(logn) (where

the exact constants are functions of the parameters of the structure).

These analyses are done under a strictly non-adaptive adversarial assumption. That is, these
probabilistic bounds on the “distribution” of elements are done under the assumption that the
updates and queries made to the structure do not depend on the internal randomness of the struc-
ture, the results of past operations, or the state of the representation. In the adaptive adversarial
setting, this cannot be assumed. This is seen in both the hash flooding attack and the skip list
degeneration attack. Therefore, intuitively, a robust skipping data structure would conserve the
desired element distribution property of the structure with high probability, even in the face of an
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adaptive adversary. This is what we aim to capture with our novel formal security model.

Further, we explore how to make these structures adversarial robust as efficiently as possible.
We observe that two abilities allow an adaptive adversary to shape the distribution of data in a
skipping structure such that subsequent operations on the structures are worst-case time with high
probability. The first is the ability of the adversary to influence how or where a particular element
gets placed in the structure upon insertion. This is akin to being able to know a priori what bucket
an element will be inserted to in a hash table or what height an element will be inserted at in a
skip list. The second is the ability to delete elements. This provides a mechanism for an adversary
to degenerate a structure after a series of insertions by deleting unfavorable (w.r.t. to the goal of
the adversary) elements.

Therefore, we propose two inexpensive modifications to the base skipping structures. We
will later prove these modified structures secure in our security model. The first is to swap hash
functions for secretly keyed primitives (concretely a PRF) for both hash tables and the deterministic
versions of the other skipping structures. This serves to prevent trivial hash flood style attacks.
The second is to prevent the adversary from actually deleting elements from the structure. This
stultifies the ability of an adversary to perform a skip list degeneration style attack, even in the
case it has full access to the internal state of the data structure.

Removing the deletion functionality entirely from our data structure would be undesirable.
Instead, we use a simple scheme that allows for the removal of elements without modifying the
actual underlying structure of a skipping DS that has been imposed by previous insertions. We
achieve this by replacing the label of the element (e.g., the key-value data) with a distinguished
symbol ¢, but not modifying (say) the linked list in a hash table bucket or the skip list structure
by removing the node (and its associated height) where this element previously existed. For the
hash table. on subsequent insertions, if an element can be placed in the empty node of a previously
deleted element, we do this first before allocating a new node via the usual insertion process. For a
skip list, this is not possible due to a subtle attack that exists if we tried this replacement strategy.
Instead, we must perform periodic cleanups of the deleted elements.

This change prevents the adversary from eliminating desired skip connections in a skip list or
obtaining trivial wins in our security model against a hash table (when taking the represented set to
be the collection of all empty and non-empty elements). However, this modified deletion function-
ality affects the space efficiency of the structures and the efficiency of the range query functionality
for the ordered skipping structures. In this work, we will not only prove our constructions secure,
but we also discuss approaches to ameliorating such concerns and analyze the trade-offs of these
approaches.

4.2 Solving Scalability for Key Transparency Systems via a Privacy-Preserving
Verifiable Summary Mechanism

Key Transparency (KT) systems offer a solution to the challenges of public key distribution in
end-to-end encrypted communication platforms. KT systems are vital to preventing trivial man-
in-the-middle attacks. Traditionally, verifying the authenticity of another party’s public key in
secure communications required either physical meetings to exchange keys—a cumbersome pro-
cess, especially with frequent key rotations and new device additions—or reliance on a third-party
authority. KT systems address these challenges by providing an automated mechanism. This mech-
anism allows users to verify that they are receiving the correct public key, or at least one that is
consistent with what other users are seeing from the same service. At the same time, it preserves
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user privacy. While KT systems cannot prevent misbehavior by a service provider, they ensure that
such misbehavior is quickly detectable. KT systems have not only attracted significant academic
interest, as evidenced by studies such as [77, [78, [49] [79, 80, 8T, 82} 83, 84}, 85l £0], but have also
been realized by platforms such as Keybase [86], Zoom [R7], Google [88], WhatsApp [89], Apple
iMessage [90], and Proton [91].

Scalability is the primary challenge in real-world KT system deployments, particularly for large
services with billions of users and multiple keys per user. Academic work has often overlooked the
performance and architectural complexities of such large-scale systems. For instance, WhatsApp’s
KT deployment features a key map with 50 billion nodes and processes 150,000 updates every
five minutes, demanding vast storage and computational resources [92]. Even with more efficient
protocols like Parakeet [84] and OPTIKS [50], storing such a large key log in RAM is impracti-
cal, necessitating external storage layers that can slow query responses. Additionally, distributed
KT systems face significant challenges in maintaining consistency across geographically disparate
nodes, as any inconsistency in updates can compromise the system’s guarantees. While WhatsApp
mitigates this by using a single write node, this approach introduces a potential bottleneck and
a single point of failure. Moreover, users expect seamless performance, so it’s crucial to develop
scalable KT solutions that minimize overhead and provide quick, low-bandwidth responses. To
address these challenges, we propose a new scalable KT system leveraging a verifiable summary
mechanism (using verifiable bloom filters) that reduces the need for full KT key log access.

In particular, this work makes the following contributions:

e We present generic and extensible definitions for KT systems. Previous works [77, 49, [84]
have treated key transparency systems as a monolithic block, i.e., they blend together the
specification of a KT system, and the protocol that realizes that specification. This signifi-
cantly complicates the analysis of the protocols and the interpretation of the derived security
guarantees.

We notice that this was also the case in the early stages of the development of other multi-
party computation (MPC) applications, like key exchange [93]. However, nowadays, there
is a clear distinction between a public-key encryption (PKE) schemeﬂ and a key-exchange
protocol protocol.

In the context of MPC, the objective of an MPC is captured in the form of an ideal func-
tionality that specifies, how the system should behave in an idealized setting. A protocol for
that functionality is then judged to be secure, if it realizes the functionality in the real-ideal
simulation paradigm[94].

Since KT is inherently an MPC, we deem it appropriate and important to formally specify
an ideal functionality for KT. We note that [49] initiate the formalization of key transparency
though the notion of a verifiable key directory (VKD). Though, while formally defining several
algorithms, their definition lacks the previously mentioned distinction between a scheme and
a protocol. We argue that in order to properly formalize key transparency, we need to
distinguish between three formal concepts:

1. a KT functionality that specifies what the formal objective of a key transparency system
is (e.g. supplying users with previously registered keys),

' A formal PKE scheme does not impose a notion of a sender or receiver, only encryption and decryption (and key
generation).
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2. a KT protocol that realizes the KT functionality (using a KT scheme), and
3. a KT scheme that defines a set of algorithms (analogous to a PKE scheme).

e We present a novel primitive — the verifiable bloom filter verifiable summary. This mechanism
allows one to answer set membership queries in a verifiable and privacy preserving manner
while only requiring a very small amount of space (relative to the set that is represented). It
consists of a composition of a VRF [95] and a standard Bloom filter.

e Furthermore, we detail our full scalable KT system that uses this verifiable summary mecha-
nism. We also show how our verifiable summary mechanism is largely separable from existing
KT solutions, making it adaptable to many current (and presumably future) KT systems
that natively lack this scalability feature.

e We implement the core components of our system using the AKD library from Facebook [96].
Further, we implement a simulator to analyze our full protocol. We find that our system
greatly reduces queries to the main KT server and provides a significant speed-up in query
response time to clients.

4.3 Compact, Private, and Verifiable Data Structures

Recall that a Bloom filter [2] is the canonical example of a probabilistic data structure: it is a
constant-sized array of m bits that summarizes a collection of N > m data elements, in a manner
that admits efficient responses to the specific query type: Is data element x present in the collection?
Because of the significant compression, the yes/no responses to these queries are only guaranteed
to be correct with some probability, this probability being over certain random choices that are
made prior to the creation of the summary from the data. Implicit in the probabilistic guarantee is
that the data is independent of the Bloom filter’s random choices, in the sense that the data can be
treated as having been fixed before those choices were made. Due to their increasingly widespread
use in systems that are deployed in untrusted environments, where the data cannot be assumed to
be independent of the filter’s randomness (e.g., when the data is streaming, and interleaved with
queries), recent work has revisited the classical correctness guarantees in the context of adversarially
shaped data. A number of recent works have examined the correctness guarantees of these structures
in adversarial settings [10, 11} 14, 13|, [72], as well as initiating explorations of privacy for the
represented data [97]. The latter is important for applications, some of which we will target in this
work, where the data itself is sensitive, either directly or by what they imply.

These recent results assume an attack model in which the threat is external, in the sense that
the summary bit-array is assumed to have been produced correctly from whatever data is provided,
and query responses are assumed to be correctly computed, no matter how the queries are crafted.
For measuring the accuracy of responses (i.e., data structure correctness) under adversarial data
and queries, or for arguing about privacy of the represented data, this attack model makes intuitive
sense. But what about applications in which the querying party is honest, and does not necessarily
trust that the summary computation or query responses have been honestly executed?

Such applications are the focus of this work. We aim to build data structures with query
responses that are publicly verifiable as having been correctly computed and consistent with what
querying parties know about the data (and its representation), while guaranteeing minimal leakage
of information about the data (i.e., beyond what would be leaked as a result of being operationally
correct and useful), and while imparting as little space and efficiency overhead as possible, with
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respect to classical structures that might be used if security concerns were removed.

For instance, recall the verifiable summary mechanism from Section [£.2] This can be seen as a
verifiable Bloom filter (VBF), constructed via simple composition of a verifiable random function
(VRF) [95] and a standard Bloom filter.

Realizing Query Verifiable Data Structures The VBF is one concrete instantiation of a
general approach to realizing our central primitive, the query verifiable data structure (QVDS).
Informally, a QVDS is an immutable data structure (in the syntax of [11]) that has been embellished
to support verification of its responses to queries. We name our general approach to constructing
QVDS the "VRF-then-DS” composition, because it is highly suggestive of what it is: first, apply
a VRF to the data, and then treat the corresponding VRF outputs as the ”"data” collection to be
represented by a traditional DS that fits the desired query type(s). For example, for applications
where verifiable element-frequency queries are needed, the VRF-then-DS composition could be
applied to a count-min sketch [4].

After establishing the syntax for our QVDS abstraction, we set out notions of completeness,
verifiability, correctness and privacy. Loosely speaking, completeness demands that honestly gen-
erated query responses must verify; verifiability requires that dishonestly produced responses will
not verify. Because traditional data structures offer a variety of correctness properties, our notion
of QVDS correctness is parameterized by a correctness relation, which may itself be a set-theoretic
function of multiple relations. For example, correct Bloom filters have the property of there being
no false negatives when responding to queries, and they have a bounded false-positive property,
where the bound is a function of the data collection size, and the Bloom filter parameters m, k.
Each of these can be captured as a stand-alone correctness relation. Similarly, our notion of QVDS
privacy is parameterized by a privacy relation that captures what should be considered “secret”.
For example, if the data objects are pairs (id;, balance;), one could demand that no adversary can
determine any given balance that is not theirs (allow for insider attacks); or, that the no adversary
can link together a particular balance and user ID id. By parameterizing our correctness and pri-
vacy notions, we are able to capture properties for disparate QVDS (especially when building from
existing, traditional DS), and this approach may be of independent interest.

We observe that common types of queries, including membership queries and element-frequency
queries, can be responded to without knowledge of the particular data elements that captured
in the DS representation. Omne could arbitrarily relabel all the points in the universe of data
elements and, so long as the labels were unique and fixed, there would be no change to the query
responses. In effect, the data structure would treat the collection of labels as the data. When
answers to (remapped) queries are invariant to the relabeling of the data collection S to some data-
agnostic collection Z, we show that average-case correctness guaranteesﬂ suffice for a VRF-then-DS
construction to achieve our (worst-case) notion of QVDS correctness. Relaxing the DS-correctness
requirements, which are often defined for the worst-case, may allow VRF-then-DS constructions
to use underlying data structures that, while more efficient in terms of time and space complexity,
would otherwise be discarded for lack of usefulness on their own.

2Loosely, for any fixed collection of labels, the DS would be deemed “correct” if, its traditional correctness
properties held for a random collection of actual data that would result in those labels.
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5

The
that

Timeline

following is an outline of work that I have already completed towards my thesis (and some
falls outside my thesis), as well as a timeline of proposed works. For this reason, this section

is not written with the usual academic formalisms — namely the use of the pronouns I and my.

that

Compact Frequency Estimators in Adversarial Environments [16] was presented at the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS 2023).

Probabilistic Data Structures in the Wild: A Security Analysis of Redis [17] is in complete
and will be in submission at an appropriate venue soon.

The proposed work on Solving Scalability for Key Transparency Systems wvia a Privacy-
Preserving Verifiable Summary Mechanism is underway and will be submitted to the 46th
IEEE Symposium on Security and Privacy on November 14, 2024. The follow-on work, Com-
pact, Private, and Verifiable Data Structures, is also underway and will be submitted to an
appropriate conference or journal in Spring 2025.

The proposed work on Skipping Data Structures in Adversarial Environments is underway
and will be submitted to an appropriate conference or journal in Spring 2025. I am traveling
to Technische Universitdt Darmstadt in the latter half of November 2024 to work with my
collaborators on this project.

After the completions of these proposed works and their subsequent submissions, I will spend
Summer and (the first half of) Fall 2025 writing my thesisﬂ I plan on defending in the latter
half of the Fall of 2025.

I would also like to mention two publications that I have contributed during my graduate work
will not be included as part of my thesis.

The DecCert PKI: A Solution to Decentralized Identity Attestation and Zooko’s Triangle [98]
was presented at the 2022 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS) and received the best paper award.

Leveraging Generative Models for Covert Messaging: Challenges and Tradeoffs for “Dead-
Drop” Deployments[99] was presented at the Fourteenth ACM Conference on Data and Ap-
plication Security and Privacy (CODASPY ’24).
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