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ABSTRACT

In this paper we show how genetic algorithms can be effec-
tively applied to study the security of arbitrary quantum
key distribution (QKD) protocols when faced with adver-
saries limited to current-day technology. We compare two
approaches, both of which take into account practical limita-
tions on the quantum power of an adversary (which can be
specified by the user). Our system can be used to determine
upper-bounds on noise tolerances of novel QKD protocols
in this scenario, thus making it a useful tool for researchers.
We compare our algorithm’s results with current known nu-
merical results, and also evaluate it on newer, more complex,
protocols where no results are currently known.
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1 INTRODUCTION

Quantum Key Distribution (QKD) protocols allow for the
establishment of a secret key between two users (Alice A
and Bob B) which is secure against all-powerful adversaries.
This task is impossible using classical communication only;
indeed, our entire modern-day communication infrastructure
depends entirely on certain computational assumptions re-
maining true. However, by using quantum communication, it
is possible to have security assuming only that the adversary
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obeys the laws of physics (a much safer assumption than the
difficulty of factoring a number into two primes). Further-
more, QKD is a practical, real-world, technology today with
several companies producing commercial quantum equipment.
For more information, the reader is referred to [11].

Currently, numerous QKD protocols exist, many with
unconditional proofs of security. Security proofs against all-
powerful adversaries generally involve highly complex math-
ematical arguments. Many newer protocols, utilizing high-
dimensional quantum carriers, or multi-pass quantum chan-
nels are conjectured to have several practical benefits (either
by being cheaper to produce, having higher efficiency, or
holding interesting security properties which may be useful
for other cryptographic primitives); however, due to their
complex nature, a full security proof is lacking. A security
proof of a QKD protocol involves an information theoretic
argument to compute its key-rate which is, roughly, the ratio
of secure secret key bits to quantum bits sent. This key-rate
computation should be a function only of observed noise in
the quantum channel. The fascinating property of quantum
communication, as opposed to classical communication, is
that, the more noise in the quantum channel, the more infor-
mation an adversary potentially has (and, so, the smaller the
key-rate will be). Thus, one wishes to bound the adversary’s
information as a function of the noise in the quantum channel.
Eventually, if the channel is too noisy, the key-rate becomes
zero - this threshold noise value is called a QKD protocol’s
noise tolerance.

Evolutionary algorithms have been used for some time
to evolve quantum algorithms [1, 10, 12-14] and to study
classical cryptography [9]. In [6], a genetic algorithm was used
to verify correctness and determine upper-bounds on security
of arbitrary QKD protocols against all-powerful adversaries.
This algorithm evolved attack operators modeled as unitary
operators acting on a T'- M dimensional complex vector space
where T is the dimension of the quantum carrier used (e.g.,
dimension 2 if qubits are used [8]) and M is the dimension
of the adversary Eve (E’s) quantum memory. This approach
was able to find the correct noise tolerance for protocols
where theoretical values are known; it was also able to find
noise tolerances for protocols which had no proof of security.

However, the work in [6] assumed the adversary had access
to a perfect quantum memory, of exponential size, and was
able to perform a theoretically optimal measurement of the
entire memory at once (this measurement strategy was not
part of the GA and its existence was simply assumed). Such
technology is not currently available, and will likely not be
available for many decades. Thus, it makes sense to also
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analyze protocols against practical adversaries which the
algorithm in [6] was not designed to handle.

There are several ways to model such practical adversaries.
Here, we focus on a model introduced in [2] which was called
a memory-less eavesdropper, whereby E had access only to
a very short-term quantum memory before she must make a
measurement on it (the memory only lasted as long as the
time it took for the qubit to pass through her lab). To analyze
a protocol, using this approach, the authors first converted it
to an entanglement based version and subsequently used semi-
definite programming to determine optimal attack operations.
This approach produced highly accurate noise tolerances for
the protocols considered in that paper; however this approach
is complex to use, and can only be used for protocols which
admit an equivalent entanglement-based version (for many
newer protocols relying on multi-pass channels, it is not
currently known how to convert to an entanglement based
version).

‘We make several contributions in this work. First, we show
how a gate-based solution representation can be used to
study practical quantum adversaries against arbitrary QKD
protocols. Our approach can be suitably modified to analyze
practical adversaries beyond the memory-less eavesdropper
model. We compare this with a unitary based solution repre-
sentation. We show that evolutionary methods can produce
the same or similar noise tolerances as current-known results,
thus giving evidence that our approach of using evolutionary
computation techniques is correct. We also show our approach
can be used for protocols which do not admit a known en-
tanglement based version. Finally, our approach does not
require extensive technical knowledge of the mathematical
foundations of quantum computation and communication
(necessary to use other numerical systems such as the one
in [2]) making it potentially more applicable to a wider user
base. As such, this approach may also be of interest to practi-
tioners of quantum communication equipment, as analyzing
protocols against practical adversaries can increase the effi-
ciency of the communication rate (since an attacker has less
information than if she had a perfect quantum memory).

2 QUANTUM COMMUNICATION
AND KEY DISTRIBUTION

We now provide some general information on quantum com-
munication, information, and key distribution. Due to length
constraints, this section is necessarily short; however the
reader is referred to [8, 11] for more information.

Classical bits can exist in one of two states: 0 and 1. Quan-
tum bits (or qubits), however, may be prepared in infinitely
many states of the form «|0) + 3 |1), where a, 8 € C subject,
usually, to the normalization constraint |a|? + |]? = 1. We
call the |-) a ket.

Mathematically, an arbitrary pure quantum system is an
element |¢) in a Hilbert space. Since all systems of interest to
us here are finite dimensional, we may equivalently consider
|1} to live in the vector space C". If {|0),--- ,|n — 1)} is an
orthonormal basis of C™ (typically called the computational
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basis or Z basis), then an arbitrary quantum system may
be represented as a linear combination (called a superposi-
tion) of these basis states; that is [¢)) = >, ay |¢), subject to
>, lai|® = 1. As vectors, one may consider the computational
basis to be the standard Euclidean basis; however the choice
is irrelevant.

Unlike a classical bit, which may be read at any time to
determine, with perfect certainty, its state (0 or 1), “read-
ing” a quantum state (called measuring) is a probabilistic
process. Given |¢) as in the previous paragraph, performing
a measurement in the computational basis yields outcome |7)
with probability |a;|?. Furthermore the state collapses to the
observed basis vector. Note also that qubits cannot be copied
without potentially disturbing their state (unlike classical
bits).

Often, we wish to consider two (or more) quantum systems.
If |¢1) € H1 =2 C" and |1p2) € Ho =2 C™, then we model the
joint state as |11) ® [¢2) (which we often denote simply
[11) |12) or |11,12)). This lives in the Hilbert space Hi ®

Ho =2 C™™. In general, if |[¢1) = (a1, -+ yan)T (transposed
as we typically view kets as column vectors), then |i1) ®
[p2) = (1 [th2) -+, an [902))

While measurements cause a system to irreversibly collapse
to the observed state, another operation allowed by the laws
of quantum physics is state evolution via a unitary operator.
An operator U is unitary if UU* = U*U = I (where U™ is
the conjugate transpose of U). The state |¢), after evolution
via U, is denoted U |¢) and, mathematically, is simply the
matrix product of U with the vector |¢)). Note that this
evolution is reversible (the inverse of U is simply U* which
is also unitary).

A quantum circuit is a collection of gates, each gate a
unitary operator typically acting on only one or two qubits.
Typical gates include the Hadamard gate, the CNOT gate,
and the rotation gate which will be defined later when used
by our algorithm. Quantum circuits act on several “wires”
each wire holding a single qubit. Thus, a circuit acting on m
wires is also a unitary operator of dimension 2™ x 2™.

For every “ket” |¢) there is a corresponding “bra” (i|
which, in the finite dimensional case, is simply the conjugate
transpose of the ket (i.e., (¢| = (|1))*) the terminology is
Dirac’s braket notation - a play on the word bracket. We
denote by (¥|¢) to be the inner product of vectors |¢) and
|¢). We denote by [¢)) (¢] to be the outer product. Note that
in both cases, the operation is simply matrix multiplication
with the former yielding a 1 x 1 matrix (which can be taken
to be a scalar in C) and the latter an n x n matrix.

Every closed quantum system may be represented as a
vector [¢) in some Hilbert space. However, we often wish to
model more general systems such as statistical ensembles of
pure states. For instance, in our protocols, we will have parties
sending pure qubit states [¢);) with certain probabilities p;.
Mathematically, we represent such a system using the density
operator formalism. The above system is represented by the
matrix p = >, pi [1:) (1i]. More generally, a density operator
is a positive semi-definite operator of unit trace; any quantum
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Figure 1: A typical QKD protocol utilizing a multi-
pass channel.

system may be modeled as a density operator (including a
pure state |¢) which is the density operator |¢) (¢]).

If pag is a density operator acting on Hilbert space Ha ®
Hg (i.e., pap models a quantum system held by two parties
A and E), then we write pg to mean the result of tracing out
A’s portion; i.e., pg = trapag and it describes the state of
the system that only E holds. If par =3, ;|4) (j| 4 ® pg’j)
then pp =3, p%’”.

Let p = pw,wy...w,, be a quantum system on m wires,
each wire holding a qubit (each wire is two-dimensional - thus
the entire system is of dimension 2™). Note that, if all m wires
of p are measured, the system is no longer quantum, but is
classical. If party A “holds” wires {w; };c4 and party E holds
wires {w;}ice (where by “hold” we mean the information
contained in the wire, which is now a classical bit, is known
to the respective party) then we write H(A|E), to be the
Shannon entropy of the classical system pa conditioned on
the classical system pg (post measurement, these are simply
classical random variables). If the context is clear, we will
not write the subscript “p.”

2.1

QKD protocols consist of a quantum communication stage
and a classical post-processing stage. The first takes place over
numerous iterations (each iteration being treated identically;
random choices are allowed, but the distribution of the choices
are fixed for each iteration). This stage utilizes a multi-pass
quantum channel, allowing qubits to travel from A to B (or
vice versa) multiple times each iteration (generally, this is a
fixed, protocol specific value we denote P in which case we
say the channel is a P-pass quantum channel). This stage
also uses an authenticated classical channel which allows A
and B to read and write classical messages to one another;
however E may only listen and not send messages of her own
(thus, it is not a secret channel). The goal of this stage is to
output a raw-key of size N bits and also an estimate of the
noise (e.g., error rate) in the quantum channel. See Figure 1.

Quantum Key Distribution
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The raw-key that is output is partially correlated between
A and B and partially secret. Thus, the second stage, classi-
cal post-processing, will first run an error correcting protocol
(over the authenticated classical channel, thus leaking addi-
tional information to E). Following this, a privacy amplifica-
tion protocol is run, taking the error-corrected raw-key and
distilling a secret key of size /(N) < N (possibly £(N) = 0 if
E has too much information). These are standard processes
and for more information, the reader is referred to [11]. We
are interested in determining the ratio r = w as N — oo.
This r is called the key-rate in the asymptotic scenario.

In the case of memory-less adversaries, E will attack each
iteration of the quantum communication stage independently
and identically by “probing” the quantum channel using a
quantum circuit (or general quantum unitary operator). This
probe acts on the qubit (traveling on what we call the Transit
Wire), a special “guess” wire, and a short-term quantum
memory that will be discarded as soon as the iteration is
complete. In the case of multi-pass channels, E will apply a
(possibly different) probe on subsequent passes, acting on the
same wires. Finally, the adversary will discard her auxiliary
wires and measure the “guess” wire which will be her guess
as to the raw key-bit that A is trying to send to B. Below,
we use E to denote the random variable of this guess wire
(which can take only two values 0 or 1). E’s goal is to find
an attack which induces minimal noise, that maximizes the
chance she “guesses” correctly (i.e., A = E). In essence, she
wants to learn as much as she can without being “caught”.

Since her attack is the same each iteration (we comment
later on how this assumption may be removed by our system),
and since she is forced to measure her system at the end
thus collapsing a quantum system to a classical one (an
assumption made to model a practical adversary), we may
use results from Csiszar-Korner [4] to evaluate r, namely:

L(N) (1)

So long as r > 0, a secret key may be distilled after privacy
amplification. Assuming the protocol is secure, as the noise
increases, r inevitably decreases (as E’s uncertainty, measured
by H(A|E), also should decrease assuming she is using an
optimal attack). The noise level at which r becomes zero is
called the protocol’s noise tolerance. If a protocol is insecure,
then r = 0 with no noise induced (i.e., its noise tolerance
is 0%). We will apply evolutionary algorithms to search
for optimized practical attacks causing minimal noise, but
maximizing E’s probability of guessing A’s key bit.

Jim = H(A|E) — H(A|B).

r =

3 THE ALGORITHM

Our goal is to devise a system whereby users may input
an arbitrary QKD protocol and have as output an estimate
of this protocol’s noise tolerance when faced with memory-
less attackers. To do so, we construct a GA which evolves
actual attack strategies (which consist of a quantum probe
and a measurement strategy) attempting to find one which
both minimizes the induced noise, while maximizing E’s
information on A and B’s raw-key. In particular, the attack
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evolved must consist of an output “guess” as to what the key-
bit is. This is in contrast to previous work [6] where general,
arbitrary, unitary operators, representing E’s attack, were
evolved and it was assumed that E performed a theoretically
optimal measurement to extract maximal information from
the resulting exponential sized quantum memory (which may
not be practical to implement even with future technology).

3.1

In general, a candidate solution is a potential attack against
the QKD protocol under analysis. We test and compare
two solution representations in this work. One based on
evolving quantum circuits out of primitive gates; the second
evolving arbitrary quantum operators. Both must incorporate
a strategy so that, once measured, E’s guess wire is highly
correlated with A’s key-bit (despite having lost access to
any auxiliary wires used), while inducing minimal noise. The
circuit based approach gives us high flexibility in studying
practical adversaries; the unitary based approach is the model
considered in [2] and also gives E potentially more power (if
the circuit size is small for the first).

First Solution Representation - The first solution
representation we consider is based on one introduced in [10]
originally meant to evolve optimized quantum algorithms.
In our case, it will be used to represent a quantum attack
strategy consisting of multiple quantum gates and measure-
ment operations. In more detail, E has access to M + 1 wires
where M is a constant specified by the user. The larger M
is, the more (temporary) quantum processing power she has.
The additional “41” wire is used to output E’s guess as
to whether A’s key-bit is a 0 or a 1 for the iteration being
attacked. In this work, we consider only attack strategies
whereby E performs the same operation each iteration of the
protocol (these may be randomized attacks - however the dis-
tribution she uses is identical each iteration). Our approach
can be extended to handle the case where E attacks blocks
of B > 1 sequential iterations differently (i.e., generating
a sequence of B different attacks and recycling them every
B iterations). The method we describe would apply simply
by creating B “guess” wires and using M + B wires. How-
ever, due to the exponential increase in memory required to
simulate a quantum system, we did not attempt to perform
experiments involving this case, leaving this analysis for fu-
ture work. Note that, in QKD literature, it is very common
to consider independent, identical attacks (i.e., B = 1) when
analyzing “practical” attacks [2]. Keep in mind that as B
increases, the quantum power of the adversary also increases
beyond what is considered currently practical.

Let G be a set of allowed quantum gates. For our evalua-
tions, we used four gates - three quantum and one measure-
ment. The quantum gates we use are the Hadamard H, a
general unitary gate R, and a CNOTx,y gate which flips the
Y wire if the X wire is a |1) (otherwise it leaves it untouched).

Solution Representations
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As matrices, these are:

S 1 1 1

i-5 (1 ) (”

eNOTxy = O v+ s (o) @
0 T pei?

ro0) = (M2 V) )

While we chose these gates, others may be easily added (or
removed) arbitrarily. Note that if an additional so-called
/8 gate is added, the set becomes universal (that is, any
quantum operation U may be constructed, to arbitrary pre-
cision, from a suitably sized collection of gates in this set;
the amount of gates required in a circuit to approximate U
depends on the desired precision). Though we did not test
this in our evaluations below, it is easy to add this additional
gate. However, without this gate, we got good results in our
evaluations. We also include a Z basis measurement operation
(if F wishes to measure in an alternative basis, this can be
done very easily by first applying R and then a measurement).
Thus G = {ﬁ, CNOT, R, Z} where Z denotes the Z basis
measurement operation. Note that, if new gates are added, it
may make the GA’s task of finding a solution easier (though
at the cost of increasing the complexity of E’s “practical”
attack). To add a gate, one must simply add its functionality
to our simulator (discussed next) and the GA will automati-
cally incorporate the new gate in its evolved solutions. Note
that entire quantum algorithms can be included as a “gate”
inG.

To represent a gate, we require its type (in our implemen-
tation, the type is simply an integer between 0 and |G| — 1).
We also require at most two indices representing which wire
it should be applied to (the CNOT gate requires two wires: X
and Y'; the others require only one). This is an index between
0 and M + 1 (inclusive; thus there are M + 2 wires in total).
Index 0 is assumed to be the transit wire (connecting A and
B) for the pass being attacked; index 1 is E’s “guess” wire;
the additional M wires are E’s auxiliary space which she may
use arbitrarily in her attack (though they will be measured
and discarded later leaving only her “guess” as shown in
Figure 2). Finally, several “attributes” are also potentially
needed which are stored as double precision floating point
values (these are used, for example, to store the values of p,
1, and 6 in the R gate).

A list of these gates (G1, G2, - ,Gk) represents an attack
strategy on one pass (the strategy consists simply of E apply-
ing gate G1 followed by G2 and so on). Of course, we are also
interested in analyzing multi-pass QKD protocols (allowing
FE to alter her attack on pass 7 based on the attack results
from pass j < 7). Thus, a candidate solution is an array (of
size P, where P is the number of passes a QKD protocol
makes each iteration) of lists of gates {(GJ,--- ,G%i)}le
with probe (G{7 e ,Gi(j) being used on pass j (all probes
acting on the same M + 2 wires). The user may specify a

maximum K’ in which case the GA we construct will ensure
that K; < K’ for all candidate solutions (this may be done
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Figure 2: The attack model we consider from [2]. A
practical adversary can only use a quantum memory
for a very short period of time before a measurement
must be made leading F to “guess” at the key-bit be-
ing sent. Only shown here is one pass - for multi-pass
channels, different circuits attack each pass, however
using the same “guess” and auxiliary wires.

Create Gate: | 20%
Remove Gate: | 30%
Change Wire: | 70%

Change Gate Type: | 20%
Change Attribute: | 80%

Table 1: Showing the probabilities of a particular
mutation action being performed. Note that actions
are chosen independently of one another and can
occur in combinations (thus they need not sum to
100%).

to increase the speed of the algorithm or to represent a re-
source limited adversary who can only apply a few gates each
iteration).

We use a modified form of the crossover and mutation
operators introduced in [10]. In particular, cross-over, given
two candidate solutions will choose P random cross-over
points (where P is the number of passes in the quantum
channel). For each of the P lists, the left-most gates from one
parent are copied to the child (up to the randomly selected
crossover point) while the right-most are copied from the
second parent.

To mutate a candidate solution, the system may add a
gate (so long as the number of gates is less than the specified
maximum K’ as discussed); remove a gate; change the wire
indices a gate is applied to; change the gate type; mutate an
attribute of a gate; or some combination of each. If mutation
ever causes an “illegal” operation (e.g., a CNOT gate where
X =Y), then the gate is treated by the simulator (to be
discussed) as the identity gate - i.e., it is ignored. After
numerous trials, the probabilities for each of these actions
that we chose to use are shown in Table 1; these values
produced good results on average in our tests.

Finally, a random solution is produced by choosing random
{n;}_,, where n; < K’ specifies the number of gates to add
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to the attack used on pass j of the quantum channel. Then,
for each pass j, n; random gates (of random types, applied
to random wires, and with random attributes) are added to
the respective list.

Second Solution Representation - For our second
representation type, we evolve arbitrary unitary operators
{U;}Z, (which could be constructed out of a suitable col-
lection of primitive gate types if K’ is large enough). While
this second method has less flexibility (in that users cannot
specify the number or types of gates to use), it potentially
is able to find attacks breaking the protocol’s security at a
lower noise level.

These operators act on the transit wire T, Eve’s (E’s)
“guess” wire and an auxiliary system of arbitrary, user speci-
fied, dimension n. Thus, each U; is a 4n X 4n unitary matrix
where U; is applied on the first pass of the qubit; Uz on the
second, and so on. Following P passes of the qubit, the guess
wire is measured in the Z basis and the auxiliary system is
discarded; thus U; must incorporate an appropriate strat-
egy so as to increase E’s chance of guessing correctly after
this measurement, and after the loss of the auxiliary system
(something that was not considered in prior work [6]).

We use the representation method from [5] which discussed
the evolution of unitary matrices which cause an input state
|¥) to evolve to a given target state |¢) (i.e., a unitary U
was evolved so that U |[¢)) = |¢)). In our case, we wish to
evolve unitary operators which, when interacting with a given
QKD protocol, will minimize the observed disturbance in the
channel, while maximizing E’s information gain on the raw
key (i.e., maximize the probability she correctly “guesses” at
A and B’s key-bit). In this representation, a unitary matrix
U of dimension N x N may be decomposed into smaller
unitary matrices requiring, in total N? real variables. Let
E%9) (¢, 1, x) be an N x N matrix, which has ones along the
diagonal, and is zero everywhere else except for:

Ei(fi’j) = e cos ¢ El“]]) =eXsing

E;ifj) = —e Xsing E](Z]) =e " cos .

with ¢ € [0,7/2] and 1, x € [0,27n]. Now, define matrices
El, s 7EN—1 as:
m—1
Ep = H Em_z’m+1(¢m—i,m+1,¢m—i,m+1,5i,m—1xm+1)-
i=0
where §; ; = 1 only if i = j (and 0 otherwise). Finally, U =
e “F1Ey -+ En_1 (with a € [0,27]). A candidate solution,
therefore, using this representation is, for each pass of the
quantum channel & 1,2,---, P, a list of four arrays ¢,
¥t x4, of of size %N(N - 1), %N(N —1), N—1,and 1
respectively. Crossover will, for each i and for each array
individually, choose a random cross over point, placing the
left portion of that array from one parent into the child and
filling the right portion with the second parent (since o’
is an array of size 1 this means simply choosing randomly
to inherit one or the other parent’s value for this variable).
Mutation will iterate through all variables in all arrays and,
with 10% probability, alter that element by a randomly chosen
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number in the range [—7, 7] (we do not enforce any boundary
conditions on the elements; since the equations are cyclic it
would not matter). A random solution is simply a random
choice for all elements of the arrays needed to construct
{Ui}fil. Finally, for efficiency purposes, our implementation
will, after any modification, construct and cache the resulting
unitary operators.

3.2 Simulating a Protocol

To simulate the quantum system, we use the quantum simula-
tor developed initially in [6, 7] which was specifically designed
to handle the combination of quantum cryptography and evo-
lutionary computation. In particular, the simulator stores
density operators as linked-lists of KetBra structures, each
of which encodes a quantity of the form:

7Z7L> <j17 e ,j’ﬂ|7

with a € C and i, jr € {0,1}. A list of these KetBra struc-
tures represents a summation of them (and thus an arbitrary
density operator). We extended this simulator to support
gate based quantum circuits allowing for the application of
standard quantum gates in sequence.

For any arbitrary QKD protocol, A and B each have access
to certain, private wires. There is at least one “transit” wire
T which carries a qubit (if higher-dimensional systems are
required, then multiple wires may be used). Any classical
public communication can also be simulated using a quantum
wire (in practice, such communication would run over a
classical communication line; however, it may be modeled as
a quantum line also). So long as the qubits are not placed
in a superposition, but remain as computational basis states,
there is no mathematical difference between this and a true
classical line. Finally, E¥ has access to quantum wires private
to her.

Abstractly, a QKD protocol consists of two functionalities:
first a computeKeyRate function and, second, a computeNoise
function. The first should compute Equation 1; the second
should compute the noise induced by the attack under consid-
eration. Both functions must simulate the protocol under in-
vestigation resulting in the construction of a density operator
description papg (represented as a list of KetBra structures).
This density operator is a function of the protocol (e.g.,
what probabilities A sends qubits and what measurements
to make) and also E’s attack (which is being evolved). Thus,
both functions take as input a candidate solution representing
E’s attack. To run our algorithm, the user must implement
these two functions - essentially, to do so, the user must call
certain routines in the simulator to describe the quantum
communication stage of the protocol and specify where E
has an opportunity to attack (our implementation, with full
source code available online, has helper functions allowing
a user to call a simple attack function at the appropriate
time; the software will then build the correct density operator
given a candidate solution). Thus users of our system do not
require advanced training in quantum mechanics making it a
more practical solution than other numerical based methods
as mentioned earlier.

iy,
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3.3 Putting it all Together

To use our system, a user must first describe the proto-
col, in particular implement the functions computeKeyRate
and computeNoise. This may be done in a straight-forward
manner using the quantum simulator. In our current imple-
mentation, this entails writing a C++ class inheriting an
abstract base class Protocol. An instance to a Protocol is
given to the GA.

The GA will then create an initial population of random
solutions. We used a population size of 100 in our evaluations.
A new population is created using crossover and mutation
as described in the previous section (dependent on the rep-
resentation type). Selection is simple tournament selection
with a tournament size of 3. For each new child solution,
it is mutated with probability 80% and added to the next
generation. Finally, we use elitism keeping the best solution
from the previous generation unaltered.

We wish to minimize the induced noise and the key-rate.
Ultimately, the goal is to find an attack against the given
protocol that causes the key-rate to be low or negative (which
implies A and B need to abort as F has too much informa-
tion) but with a small disturbance. If such an attack is found,
that means any user of this protocol must abort if an error
rate of this level is observed (since, clearly, an attack exists
which gives F too much information while inducing the ob-
served noise). This mechanism can also be used to show the
insecurity of a protocol. For instance, if a protocol is given
and an attack found against it which induces no noise and
has a key-rate of zero, this implies the protocol is completely
insecure. Our fitness function is based on the one used in [6],
namely: fit =p- (r — 1) + (1 —p) - (Q — 7¢)?, where r is
the result of the function computeKeyRate and () the result
of computeNoise. The value of p can be set by the user -
we found p = 0.55 to produce good results. Finally, 7. and
TqQ are a “target” rate and noise value which may be set by
the user. In our tests, we use TR = —.02 and 7¢ = 0 which
generally produced good results. In practice, users may alter
these values to get a “tighter” estimated noise tolerance as
output (our system can only provide upper-bounds on the
noise tolerance).

As the primary goal is to output an estimate of the noise
tolerance of the given protocol under these practical attacks,
at the start of the algorithm, a value Qo is set to 1. This
variable will be the actual estimate of the protocol’s noise
tolerance. After each new generation is created, the best
solution of that population is considered. If the key rate
of the protocol is less than some user-specified tolerance T
(when faced with this attack), the protocol is considered to
be insecure against this attack. In this case, the noise induced
by the attack, @, is considered; if it is lower than Q.q:, wWe set
Qout < Q. That is, we are saving the smallest induced noise,
which may be produced by an attack causing the protocol to
be insecure (insecurity defined by having a key-rate that is
lower than user-specified T'). After a user-specified number
of generations (1000 in our evaluations below), the value of
Qout 18 outputted.
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Experiment BB84 | six-state BB84 | SARG04 | B92 | SQKD
Avg 173 .257 221 .202 126
G(1,4) Min .154 211 .205 174 .103
’ o .029 .045 .022 .022 .02
# 17/20 15/20 16/20 | 16/20 | 7/10
Avg 172 .26 228 225 167
Min .154 211 .206 194 167
G(3,4) o 025 .04 022 031 | 1077
# 20/20 14/20 13/20 | 15/20 | 7/10
Avg .159 215 .189 134 131
u) Min 157 211 183 124 122
o .002 .006 .004 .006 .006
# 20/20 20/20 20/20 | 20/20 | 10/10
Avg 170 .227 221 .203 .164
UE@) Min .161 215 .208 .169 142
o .004 .005 .01 .032 .011
# 20/20 20,20 19/20 | 20/20 | 9/10
Tolerance from [2] | .154 .204 175 n/a n/a

Table 2: Results of our experiments as discussed in the text. Showing the average Q,.; output (Avg), minimum
output (Min), and standard deviation (o) over successful trials (#). If the algorithm did not find an attack
causing the key-rate to drop below T = 0 during a trial, then it was considered unsuccessful and so no output
for that trial was produced. Shown for each experiment is the number (#) of successful trials (over which the
average and standard deviation are computed). Also shown are noise tolerances found in [2] if such data is
available (the last two protocols were never analyzed in this security model - in fact, it is not clear if SQKD

even could be analyzed using their method).

4 EVALUATION

We evaluate our algorithm on several QKD protocols, namely
BB84, six-state BB84, SARGO04, and B92 (descriptions of
these protocols may be found in the survey paper [11]). We
also evaluate a semi-quantum protocol introduced in [3] (de-
noted SQKD). The first four protocols are one-pass protocols;
the semi-quantum one is a two-pass protocol. The first three
were analyzed in [2] giving us a comparison case. The last
two protocols were not evaluated before, thus they show that
our system can be used to easily analyze new protocols of
varying complexity. Indeed, to analyze these systems, we did
not need to perform any mathematical analysis - instead
we simply inherited a base class, and implemented the two
critical functions computeKeyRate and computeNoise; these
were implemented with simple calls to the quantum simulator
(full source code available online).

For all evaluations we used a population size of 100. Mu-
tation rates and tournament size are as described in the
previous section and remained fixed. The value for g and
7r (used in our fitness function) also remained fixed at 0 and
—0.02 respectively for all trials.

For each of the five protocols, we ran several independent
experiments, each experiment consisting of 20 independent
trials (10 for the semi-quantum protocol - due to this proto-
col’s complexity, each trial took significant time to complete;
we suspect, however, this can be greatly improved through
a more efficient software implementation of our algorithm),
each trial consisting of 1000 generations. The output of a
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single trial was the value Q,,: which is the estimated noise
tolerance of a protocol after 1000 generations.

To test the gate-based solution representation, the parame-
ters are M, the number of wires allowed by E (the more wires
she has, the more temporary quantum processing power she
has); and K’, the maximum number of gates she can apply in
a single pass. We denote this experiment G(M, K'). To test
the unitary-based solution representation, the parameters are
n, the dimension of E’s auxiliary space (the higher this is, the
more quantum power she has). We denote this experiment
U(n). Our data is presented in Table 2.

We note that, for BB84, our algorithm finds a noise bound
similar to that in [2]. For the other two protocols which
were analyzed in that source, our algorithm finds upper-
bounds that are close, though higher. Though they are not
exact, recall an advantage to our algorithm is more flexibility
allowing it to easily analyze other protocols, including multi-
pass ones. For B92 and the SQKD protocol, no other data
is known so we cannot compare, however the output of our
algorithm seems plausible considering the construction of
these protocols compared with the other three. An attack
against the semi-quantum protocol is shown in Figure 3. The
latter is very interesting - for this particular protocol, the key-
bit is carried on the first pass connecting A to B. The second
pass is only used for error checking. Our algorithm discovered
an attack taking advantage of this - namely, E’s guess depends
only on the forward channel attack; the reverse attack simply
“undoes” some of the noise by applying a rotation gate. We
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Figure 3: An attack found by our algorithm against
the two-way SQKD protocol. This attack induces an
error rate of .104 and a key rate of zero. The param-
eters for the first R gate are p = .906, 6 = 3.789, and
1) = 3.804; for the second R gate (used in the channel
connecting B to A) are p =1, § = 2.228, and ¢ = 3.56.

did not specifically tell the GA this - we simply inserted the
protocol into our simulator leaving it to discover this attack.

Comparing the gate based to the unitary based solution
representation we find that the gate based approach is able
to find lower noise tolerances in the majority of our test cases
(recall, all of these outputs are upper-bounds on the noise
tolerances). However, the unitary approach succeeded more
often than the gate-based approach where success of a trial is
defined to be one where any attack is found causing the key
rate to drop below T'. Furthermore, the unitary approach had
a much lower standard deviation in all cases except one, the
G(3,4) case of SQKD. However, this is due to the fact that the
gate based approach in all tests of SQKD in the (3,4) setting
found a trivial measure/resend solution. In the (1,4) case,
however, the GA found a non-trivial solution in this setting
thus causing the noise tolerance bound to be lower. Note,
these differences could also be an effect of the fine-tuning of
the GA parameters, nonetheless, it can be useful for users
of our system to have both gate and unitary methods, and
simply take the minimum output of each. Recall that, any
minimum reported by our system is a valid upper-bound on
the noise tolerance, thus one should take the minimum value
as the final result of the system.

Mutation probabilities shown in Table 1 were manually
fine tuned by running on the BB84 test case since BB84 is a
relatively simple protocol and, since we have good bounds on
what the value should be. Changing an attribute is the easiest
thing to modify and we found a high probability of choosing
this action was best. Surprisingly we found better results
when the mutation removed gates with greater probability
than adding gates. Note also that, adding gates, requires
additional computation thus slowing the simulation.

5 CLOSING REMARKS

In this paper, we showed how genetic algorithms can be
used to study the security of QKD protocols when faced
with practical adversaries. We compare two solution repre-
sentations and evaluated both on five distinct protocols. Our
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method can be used to easily study new protocols without
requiring users to first mathematically convert the protocol
into an equivalent entanglement based version (which is not
necessarily known how to do for certain multi-pass protocols).
It was also able to take advantage of the structure of the
protocol to find optimal attacks. Many interesting future
problems remain open. Of particular interest would be to
adapt this system to allow an adversary to create attacks
based on the actual optical instruments used in a protocol.
It would also be interesting to consider the effect of noisy
operations in E’s probe (i.e., if E’s gates and measurements
were noisy themselves). Ultimately, by having an algorithm
to rapidly test security within these various practical security
models (which are very difficult to analyze mathematically),
this investigation can greatly enhance our understanding of
quantum communication and be a useful tool for users of
this technology. Our software is available for download at
walterkrawec.org/QKDPracAtk.html.
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