
DATA STRUCTURES IN ADVERSARIAL ENVIRONMENTS

By

SAM A. MARKELON

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2025

© 2025 Sam A. Markelon

2

For my dearest Julia, without whom this would mean less

3

ACKNOWLEDGEMENTS

This is the last section of my dissertation I am writing, and somehow, it also feels like the

toughest (I would be remiss to forget anyone!). While defending a dissertation and earning a

doctorate may seem like a solitary achievement, I can unequivocally assure you that it is not. This

accomplishment (and my life trajectory in general) would not have been possible without a

wonderful and unwavering support system, both personal and professional.

I would like to begin by thanking my parents, Dawn and Tim. They have been nothing but

loving and encouraging since the day I was born and gave me an almost idyllic childhood in the

wonderful small town of Burlington, Connecticut. Instilling in me and my siblings, Jack and

Hannah (whom I also owe a lot to), the values of education and hard work was a gift beyond

measure. I also want to thank the entirety of my (very large) extended family – you have forever

impressed upon me the importance of family and gathering. I especially want to acknowledge my

maternal grandparents, my Nonni and Boppi. They are my only local relatives in north-central

Florida, and I have greatly enjoyed the many dinners and visits over the past five years. It is with

great sadness that my Boppi is not here to witness the end of my doctoral journey, but his memory

is a blessing, and I am comforted by the thought that he is at peace. Lastly, to my soon-to-be

in-laws, Kelly and Brian: thank you for all of your support over the last five years (especially the

plane tickets to visit home), for making me a part of your family, and above all, for giving me the

greatest gift of all – my fiancée Julia.

Professionally, I have had many mentors who encouraged my intellectual curiosity and

guided my growth as a scientist. At the University of Connecticut, I am grateful to Dr. Kyungseon

Joo for introducing me to research and offering incredible opportunities to a wide-eyed

underclassman. Dr. Walter Krawec welcomed me to his quantum key distribution lab, redirecting

me from physics toward computer science and cybersecurity. I also thank him for his mentorship

on my first academic papers. Lastly, I want to thank Dr. Benjamin Fuller and Dr. Amir Herzberg

for introducing me to cryptography and inspiring my passion for it.

4

I would not be who I am today without Dr. Thomas Shrimpton. Quite literally, meeting Tom

at Real World Crypto 2020 convinced me to go to the University of Florida and work with him. I

am deeply thankful for his guidance over the past five years and for suggesting (or perhaps

imposing upon me) the research topic that forms this work. I will never forget our sessions at the

chalkboard, marathon Slack chats, and all-night paper pushes. Although Tom is not my advisor of

record due to his bewildering decision to move to industry (I jest, of course), he deserves the most

credit for my development as a researcher.

I also extend my thanks to my committee – Dr. Vincent Bindschaedler, Dr. Patrick Traynor,

Dr. Sara Rampazzi, and Dr. Jeremy Booher – for their encouragement and helpful suggestions

along the way. I am especially grateful to Vincent for stepping in as my advisor and helping (or

dragging) me across the finish line. I also want to recognize Dr. Kevin Butler, who, although not

on my committee, provided invaluable leadership at the Florida Institute for Cybersecurity

(FICS). To all the faculty, administrators, and students (past and present) of FICS, as well as to the

institute itself – my deepest gratitude. It is a truly wonderful place to work, and I could not have

asked for a better lab to complete my doctorate in. While the volume and impact of research

coming out of FICS is impressive, it is the people and the culture that make it exceptional. You

will not find a group of smarter, more innovative, friendly, and honest individuals. I am honored

to have been a small part of it.

During my PhD, I was fortunate to participate in two international collaborations. I am

especially thankful to Dr. Kenneth Paterson (ETH Zurich, Applied Cryptography Group) and Dr.

Marc Fischlin (TU Darmstadt, Cryptoplexity Group) for hosting me for research visits and

collaborating on works that appear in this work. Mia Filić (ETH Zurich) deserves special

recognition – she is my longest collaborator and a dear friend. Without her, this work would not

have been possible. I also wish to acknowledge Moritz Huppert (TU Darmstadt); he has been an

insightful and tenacious collaborator and deserves credit for introducing me to many delicious

German beers (and his more limited success at convincing me of the joys of German humor). I

also thank all the students of these groups – they were incredibly welcoming during my visits, and

5

I am glad to call many of you friends. A special thanks to Nicholas-Philip Brandt (ETH Zurich);

although Nico and I did not collaborate on work in this dissertation, he is one of the most

meticulous researchers I know.

Beyond my family and professional mentors, this journey would not have been possible

without a wide and geographically dispersed group of friends. To Tim, Jefferson, Logan, Gavin,

and John – thank you for making Gainesville fun these past five years. To my UConn friends Jake,

Andy, Owen, Mitchell, Kevin, Skippy, Stofko, Bucco, and Paul – thank you for all the

shenanigans, for visiting me in Florida, and for Huskies basketball (back-to-back national

champions!). To my childhood friends Cameron, Jack, Alex, and Tom – thank you for making it

feel like no time has passed when we get together. To everyone who has ever played a round of bar

trivia with me, and to all my other dear friends whom I could not possibly enumerate – thank you.

Lastly, and above all, thank you to my Julia. Your partnership over the past decade has kept

me steady. Thank you for your unwavering support (even when I decided to move over a thousand

miles away to pursue a PhD with some guy named Tom I met at a conference). You are everything

I could have dreamed of in a partner. I am beyond excited to marry you and build our life together.

I love you with all my heart.

6

TABLE OF CONTENTS
page

ACKNOWLEDGEMENTS . 4

LIST OF TABLES. 9

LIST OF FIGURES. 11

ABSTRACT. 12

CHAPTER

1 INTRODUCTION . 14

1.1 Thesis Statement. 16
1.2 Contributions . 17

1.2.1 Compact Frequency Estimators in Adversarial Environments 17
1.2.2 Compact Frequency Estimators in the Wild: A Case Study of Redis. 17
1.2.3 Provably Robust Probabilistic Skipping-Based Data Structures. 18

1.3 Outline and Publications . 19

2 BACKGROUND. 20

2.1 Notation. 20
2.1.1 Bitstring and Set Operations . 20
2.1.2 Functions . 20
2.1.3 Arrays and Tuples . 20

2.2 A Syntax for Data Structures . 21
2.3 Streaming Data . 22
2.4 Related Works . 22

2.4.1 Compact Probabilistic Data Structures and Compact Frequency Estimators 23
2.4.2 Probabilistic Skipping-Based Data Structures . 24

3 COMPACT FREQUENCY ESTIMATORS IN ADVERSARIAL ENVIRONMENTS. 31

3.1 Formal Attack Model . 34
3.2 Count-min Sketch. 36
3.3 HeavyKeeper . 37
3.4 Attacks on CMS and HK . 39

3.4.1 Cover Sets . 39
3.4.2 Cover-Set Attacks on CMS. 42
3.4.3 Cover-Set Attacks on HK . 49

3.5 Count-Keeper. 55
3.5.1 Structure . 55
3.5.2 Correcting CMS and Correctness of CK . 56
3.5.3 Frequency estimate errors. 61
3.5.4 Experimental Results . 63
3.5.5 Attacks Against the CK . 70
3.5.6 Adversarial Robustness . 73

7

4 COMPACT PROBABILISTIC DATA STRUCTURES IN THE WILD: A SECURITY
ANALYSIS OF REDIS . 86

4.1 PDS in Redis . 89
4.1.1 Count-min Sketch . 89
4.1.2 Top-K . 91

4.2 Attacks Against PDS in Redis . 94
4.2.1 MurmurHash Inversion Attacks . 94
4.2.2 Count-Min Sketch Attack . 96
4.2.3 Top-K . 98

4.3 Potential Countermeasures . 101

5 PROVABLY ROBUST PROBABILISTIC SKIPPING-BASED DATA STRUCTURES . . 106

5.1 Structures we Analyze . 106
5.1.1 Hash Tables . 106
5.1.2 Skip Lists . 108
5.1.3 Treaps . 108

5.2 Unifying Probabilistic Skipping-Based Data Structures . 109
5.2.1 Timing Side Channels . 112
5.2.2 Towards Robust PSDS . 113

5.3 A Security Model for Probabilistic Skipping-Based Structures. 115
5.4 Robust Hash Tables . 119

5.4.1 Insecurity Of Standard Hash Tables . 119
5.4.2 A Robust Construction. 120
5.4.3 Robust Hash Tables in Real World Deployments . 122

5.5 Robust Skip Lists . 123
5.5.1 Insecurity of Standard Skip Lists . 123
5.5.2 A Robust Construction. 124
5.5.3 Robust Skip Lists in Real World Deployments . 134

5.6 Robust Treaps . 135
5.6.1 (In)Security of the Standard Treap. 135
5.6.2 A Robust Construction. 137
5.6.3 Robust Treaps in Real World Deployments. 144

5.7 Experimental Results . 145

6 CONCLUSION AND FUTURE WORK . 157

LIST OF REFERENCES. 160

BIOGRAPHICAL SKETCH . 168

8

LIST OF TABLES
Tables page

3-1 Non-adversarial CFE Results. 68

3-2 CFE Attack Comparison.. 72

4-1 Comparison of Redis CMS Attack Versus Generic Attack. 98

4-2 Cost of Redis TK NFC Violation Attack. 101

9

LIST OF FIGURES
Figures page

3-1 The ERR-FE Attack Model. 35

3-2 The Count-min Sketch Structure. 36

3-3 The HeavyKeeper Structure. 38

3-4 Public Hash CMS Attack. 44

3-5 Private Hash and Private Representation CMS Attack. 76

3-6 Private Hash and Public Representation CMS Attack.. 77

3-7 Public Hash HK Attack.. 78

3-8 Private Hash and Private Representation HK Attack.. 79

3-9 Private Hash and Public Representation Attack. 80

3-10 The Count-Keeper Structure. 81

3-11 Stream Frequent Elements. 82

3-12 Public Hash CK Attack. 82

3-13 Private Hash and Private Representation CK Attack. 83

3-14 Private Hash and Public Representation CK Attack. 84

3-15 Robust Flag Raising Count-Keeper Structure. 85

4-1 The Redis CMS Structure. 89

4-2 The Redis Top-K Structure. 91

4-3 Redis CMS Overestimation Attack. 97

4-4 Redis TK Known Top-𝐾 Hiding Attack. 103

4-5 Redis TK Hidden Top-𝐾 Hiding Attack. 104

4-6 Redis TK NFC Violation Attack. 105

5-1 Hash Table Structure. 107

5-2 Skip List Structure. 147

5-3 Treap Structure. 148

5-4 The AAPC Security Model. 149

5-5 HT Maximum Search Path.. 149

5-6 Treap Maximum Search Path. 150

10

5-7 SL Maxium Search Path. 150

5-8 A Robust Hash Table. 151

5-9 The Gap Attack. 151

5-10 A Robust Skip List. 152

5-11 Skip List Swapping Mechanism.. 153

5-12 A Robust Treap. 154

5-13 Non-adaptive PSDS Results. 155

5-14 Adaptive PSDS Results. 156

11

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DATA STRUCTURES IN ADVERSARIAL ENVIRONMENTS

By

Sam A. Markelon

August 2025

Chair: Vincent Bindschaedler
Major: Computer Science

This work investigates the security of widely-used data structures under adversarial

conditions, with a particular focus on compact frequency estimators (CFEs) and probabilistic

skipping-based data structures (PSDS). These structures, though efficient and fundamental to

many modern systems, have historically been analyzed primarily through the lens of performance

and operational efficiency, with security considerations treated as an afterthought.

Compact probabilistic data structures (CPDS), such as Bloom filters, Count-min sketch

(CMS), and HeavyKeeper (HK), are designed to provide compact representations of large

datasets, supporting approximate queries with bounded error probabilities. However, existing

correctness guarantees implicitly assume non-adaptive adversaries. This work reveals that

adaptive adversaries can severely degrade the accuracy of these structures. In particular, it

presents both theoretical and experimental attacks against CMS and HK that exploits a mixture of

fixed randomness and past query responses, leading to significant frequency estimation errors. To

counteract these vulnerabilities, we introduce Count-Keeper, a novel CFE that offers improved

accuracy for honest data streams, resilience against adaptive attacks, and a native mechanism for

flagging suspicious estimates.

Beyond theoretical analysis, this work evaluates CFE implementations in Redis, a widely

deployed in-memory database system. Redis’s reliance on non-cryptographic hash functions and

deviations from standard CFE designs enable novel attacks that surpass those possible against

12

generic versions. This analysis highlights the critical need for secure implementations in practice

and proposes countermeasures to mitigate these threats.

Probabilistic skipping-based data structures (e.g., hash tables, skip lists, and treaps) also

exhibit vulnerabilities under adversarial conditions. While these structures achieve efficient

operations by leveraging randomness, adaptive adversaries can force worst-case performance,

causing exponential degradation in their operational efficiency. This work presents attacks on

these structures and proposes robust, performant variants. The robustness of these variants is

formalized through the Adaptive Adversary Property Conservation (AAPC) framework, which

quantifies deviation from expected performance under adversarial influence. Analytical proofs

and experimental validation confirm the efficacy of these designs.

Collectively, this work advances the security analysis of data structures from theoretical

constructs to real-world implementations, bridging the gap between performance and provable

security.

13

CHAPTER 1
INTRODUCTION

Data structures define representations of (possibly dynamic) sets or multisets, along with the

operations that can be performed on these representations. Efficient data structures are crucial for

designing efficient algorithms [1]. The development and analysis of data structures has largely

been driven by operational concerns, e.g., efficiency, ease of deployment, support for broad

application. Security concerns, on the other hand, have traditionally been treated as afterthoughts

(at best). However, recent research has highlighted that many widely-used data structures do not

behave as expected when in the presence of adversaries that have the ability to manipulate the data

they represent. Furthermore, complex, modern protocols with sophisticated security goals

increasingly rely on bespoke data structures as fundamental components of their designs. It is

therefore both timely and prudent to apply the provable security paradigm to data structures

themselves.

Consider, the family of compressing probabilistic data structures (CPDS). The use of CPDS

has grown rapidly in recent years in correlation with the rise of distributed applications producing

and processing colossal amounts of data. These structures provide compact representations of

(potentially massive) data collections, and support a small set of queries. The trade-off for

compactness is that query responses are only guaranteed to be “close” to the true answer (i.e., if

the query were evaluated on the full data) with a certain probability. A canonical example is the

Bloom filter [2] which supports set-membership queries (“Does element 𝑥 appear in the data?”).

Bloom filters have found widespread use in applications such as caching [3], database query

optimization [4], search engine indexing [5], and even Bitcoin wallet synchronization [6].

The probabilistic guarantee on the correctness of responses assumes that the data

represented by the Bloom filter is independent of the randomness used to sample the hash

functions that are used to populate the filter, and to compute query responses. This is equivalent to

providing correctness guarantees in the presence of adversarial data sets and queries that are

non-adaptive, i.e., made in advance of the sampling of the hash functions. Recent research,

however, has revealed that many data structures, including Bloom filters, perform poorly under

14

adaptive adversaries, which tailor queries based on previous responses and knowledge of the

underlying hash functions [7, 8, 9, 10]. Similar vulnerabilities have been demonstrated for

HyperLogLog structures [11], which estimate the number of distinct elements in a collection [12].

Another important subclass of CPDS is the family of compact frequency estimators (CFEs),

which includes structures such as Count-,in sketch and HeavyKeeper. Unlike Bloom filters, which

answer membership queries, CFEs estimate the frequency of elements in a data stream. Despite

their increasing adoption in network monitoring, stream processing, and heavy hitter detection,

the formal analysis of CFEs has lagged behind their practical deployment. In particular, their

robustness under adversarial conditions remains largely unexplored.

Another critical family of data structures is what we refer to as probabilistic skipping-based

data structures (PSDS), including hash tables, skip lists, treaps, skip graphs, and randomized

meldable heaps. Unlike CPDS, these structures are not space-efficient, but, in turn, offer exact

answers to queries. Their design leverages randomness to achieve fast average-case performance –

often constant or logarithmic time for search, insertion, and deletion – but with worst-case

runtimes linear in the collection size. This randomness, while beneficial for expected

performance, creates an attack surface: adversaries can exploit structural weaknesses to force

worst-case behavior.

This is exemplified by complexity attacks against hash tables, where an adversary crafts

input patterns that induce excessive hash collisions, resulting in performance degradation to linear

time. While the underlying idea (exploiting structural dependencies in hashing) may seem

conceptually simple, the real-world consequences are severe, including denial-of-service (DoS)

vulnerabilities in many widely used applications [13, 14, 15, 16, 17]. Despite a range of proposed

mitigations, formal security models for these attacks and provable guarantees for the mitigations

are conspicuously lacking. Even less is known about how other PSDS structures, such as skip

lists, treaps, zip trees, and randomized meldable heaps, behave in adversarial settings. Notably,

the only substantive work addressing adversarial behavior in PSDS beyond hash tables is that of

Nussbaum and Segal, who demonstrated a timing side-channel attack against skip lists [18].

15

The need for provably robust data structures is thus not merely theoretical, but essential for

securing modern systems against adaptive adversaries. This work advances this frontier by

investigating attacks and constructing formally secure variants of CPDS and PSDS, with a

particular emphasis on compact frequency estimators (a subclass of CPDS) and hash tables, skip

lists, and treaps (PDSS). By doing so, we aim to provide both a rigorous foundation for secure

data structures and practical tools for safeguarding real-world applications.

1.1 Thesis Statement

The goal of this work is to rigorously analyze data structures in adversarial environments,

specifically focusing on both compressing probabilistic data structures and probabilistic

skipping-based data structures, and to construct performant and provably robust variants of these

structures. The emphasis is on adaptive adversaries, who are capable of selecting queries and data

inputs based on prior interactions with the structure, knowledge of the randomness used to

initialize the structure, and the representation the structure has collection for a given data

collection.

Therefore, the central thesis of this work is:

For compact frequency estimators (a subclass of compressing probabilistic data structures)

and probabilistic skipping-based data structures (including hash tables, skip lists, and treaps),

formal adversarial models that capture the adaptive ability of adversaries can be defined under

which these structures are provably insecure. Specifically, these models capture scenarios in

which an adversary, with knowledge of the structure’s parameters, query responses, and, in certain

cases, initialization choices and representations, can degrade correctness or performance

guarantees beyond acceptable thresholds. It is further claimed that, for these same adversarial

models, it is possible to construct new variants of these data structures that are provably robust,

with explicit, formal guarantees on their correctness, performance, and security under attack.

16

1.2 Contributions

In addressing the goals of formalizing the security of compact frequency estimators and

probabilistic skipping-based data structures, and in providing provably robust versions, this work

makes the following contributions:

1.2.1 Compact Frequency Estimators in Adversarial Environments

Count-min sketch (CMS) and HeavyKeeper (HK) are two realizations of compact frequency

estimators (CFEs), a subclass of compressing probabilistic data structures that maintain a compact

summary of (typically) high-volume streaming data. CFEs provide approximate estimates of the

number of times a particular element has appeared in the stream. They often serve as foundational

structures in systems identifying the highest-frequency elements (e.g., top-𝐾 elements, heavy

hitters, elephant flows). Traditionally, the probabilistic guarantees on the accuracy of CFEs are

proved under the implicit assumption that stream elements are independent of the internal

randomness of the structure—in other words, under the assumption of non-adaptive adversaries.

However, in many practical scenarios, particularly those involving malicious actors incentivized to

manipulate the data stream, this assumption does not hold. We demonstrate that both CMS and

HK can be forced to make significant estimation errors via concrete attacks exploiting adaptivity.

These attacks are analyzed both analytically and experimentally, with tight agreement between

theory and practice. Unfortunately, our results suggest that such vulnerabilities may be inherent to

sketch-based CFEs with parameters practical for real-world use. On a positive note, we introduce

a new CFE, Count-Keeper, which can be viewed as a composition of CMS and HK. Count-Keeper

yields estimates that are typically more accurate (by at least a factor of two) than CMS for

”honest” streams; our adaptive attacks are less effective (and more resource-intensive) against

Count-Keeper; and Count-Keeper uniquely supports flagging suspicious estimates – an ability

absent in CMS, HK, and, to our knowledge, any other known CFE.

1.2.2 Compact Frequency Estimators in the Wild: A Case Study of Redis

Redis (Remote Dictionary Server) is a general-purpose, in-memory database that supports a

rich array of functionality, including various CPDS, and in particular, two CFEs: CMS and Top-K

17

(based on HK). As aforementioned, CFEs typically perform well on average-case inputs, their

performance can degrade severely under adaptive adversaries. Given Redis’s wide deployment

across diverse applications, it is crucial to evaluate the resilience of these CFEs under worst-case

scenarios, specifically adversarial inputs. We conduct a comprehensive analysis of Redis’s CFE

implementations, detailing deviations from the structures as described in the literature. We

demonstrate that these deviations enable four novel attacks, each more severe – or outright

impossible – compared to attacks on the generic versions of the CFEs. We highlight the critical

role of Redis’s choice to use non-cryptographic hash functions in the severity of these attacks.

Finally, we discuss potential countermeasures to mitigate these vulnerabilities.

1.2.3 Provably Robust Probabilistic Skipping-Based Data Structures

Probabilistic skipping-based data structures – such as hash tables, skip lists, and treaps –

support efficient operations through randomized hierarchies that enable ”skipping” elements,

achieving sublinear query complexity in the average case for perfectly correct responses. These

structures are critical in performance-sensitive systems where correctness is essential and

efficiency is highly desirable. While simpler than deterministic alternatives like balanced search

trees, these structures traditionally assume that input data is independent of the structure’s internal

randomness and state – an assumption that breaks down in adversarial environments. Under

adaptive adversaries, this can lead to significant degradation in query performance. We present

adaptive attacks on hash tables, skip lists, and treaps that, in the case of hash tables and skip lists,

induce exponential performance degradation compared to the input-independent setting. While

attacks on hash tables have been well studied, our attacks on skip lists and treaps offer new

insights into vulnerabilities in probabilistic skipping-based data structures. In response, we

propose simple and efficient modifications to these structures, yielding provably secure variants

under adaptive adversaries. Our approach is formalized through the Adaptive Adversary Property

Conservation (AAPC) framework, a general security notion capturing deviation from expected

efficiency guarantees in adversarial settings. Using this framework, we present rigorous

18

robustness proofs for our proposed variants. Lastly, we conduct experiments whose empirical

results align closely with our analytical predictions.

1.3 Outline and Publications

The remainder of this is organized as follows. Chapter 2 introduces the necessary notation

and syntax used throughout the document, as well as key terms and a review of related work.

Chapter 3 examines compact frequency estimators in adversarial environments. Chapter 4

presents our analysis of compact frequency estimator implementations in Redis and their limited

robustness under adversarial conditions. Chapter 5 focuses on probabilistic skipping-based data

structures, providing robust efficiency guarantees. Finally, Chapter 6 offers concluding remarks

and discusses potential directions for future work.

This work is based on the following publications1:

• Chapter 3 is based on:

Sam A. Markelon, Mia Filić, and Thomas Shrimpton. 2023. Compact Frequency

Estimators in Adversarial Environments. In Proceedings of the 2023 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’23).

• Chapter 4 is based on:

Mia Filić, Jonas Hofmann, Sam A. Markelon, Kenneth G. Paterson, and Anupama

Unnikrishnan. 2025. Probabilistic Data Structures in the Wild: A Security Analysis of

Redis. In Proceedings of the Fifteenth ACM Conference on Data and Application Security

and Privacy (CODASPY ’25).

• Chapter 5 is based on:

Marc Fischlin, Moritz Huppert, and Sam Markelon. 2025. Probabilistic Skipping-Based

Data Structures with Robust Efficiency Guarantees. In submission to the 2025 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’25).

1Publications with a majority European collaboration use alphabetical author ordering.

19

CHAPTER 2
BACKGROUND

2.1 Notation

2.1.1 Bitstring and Set Operations

Let {0, 1}∗ denote the set of bitstrings and let 𝜀 denote the empty string. Let 𝑋 ∥𝑌 denote

the concatenation of bitstrings 𝑋 and 𝑌 . When S is an abstract data-object (e.g., a (multi)set, a

list) and 𝑒 is an object that can be appended (in some understood fashion) to S, we overload the ∥

operator and write S ∥ 𝑒.

Let 𝑥 ←← X denote sampling 𝑥 from a set X according to the distribution associated with X;

if X is finite and the distribution is unspecified, then it is uniform. Moreover, we denote by U(𝑆)

the uniform distribution on the (finite or uncountable) set 𝑆 ≠ ∅, and by G(𝑝) be the geometric

distribution for success probability 𝑝.

Let [𝑖.. 𝑗] denote the set of integers {𝑖, . . . , 𝑗}; if 𝑖 > 𝑗 , then define [𝑖.. 𝑗] = ∅. For all 𝑚 ≥ 2,

let [𝑚] = {1, 2, . . . , 𝑚}.

Let A and B be sets. We take A ∪ B to be the union of the sets, A ∩ B to be the

intersection of the sets, and A \ B to be set-theoretic difference of A and B.

2.1.2 Functions

Let Func(X,Y) denote the set of functions 𝑓 : X → Y. For every function 𝑓 : X → Y,

define id 𝑓 : {𝜀} × X → Y so that id 𝑓 (𝜀, 𝑥) = 𝑓 (𝑥) for all 𝑥 in the domain of 𝑓 . This allows us to

use unkeyed hash functions 𝐻 in situations where, syntactically, a function is required to take a

key along with its input.

2.1.3 Arrays and Tuples

We use the distinguished symbol ★ to mean that a variable is uninitialized. By [item] × ℓ

for ℓ ∈ 𝑁 we mean a vector of ℓ replicas of item. We use zeros(𝑚) denote a function that returns

an 𝑚-length array of 0s and, likewise, zeros(𝑘, 𝑚) to denote a function that returns an 𝑘 × 𝑚 array

of 0s. We index into arrays (and tuples) using [·] notation; in particular, if 𝑅 is a function

returning a 𝑘-tuple, we write 𝑅(𝑥) [𝑖] to mean the 𝑖-th element/coordinate of 𝑅(𝑥).

If 𝑋= (𝑥1, 𝑥2, . . . , 𝑥𝑡) is a tuple and S is a set, we overload standard set operators (e.g., 𝑋 ⊆S)

20

treating the tuple as a set; if we write 𝑋 \ S, we mean to remove all instances of the elements of S

from the tuple 𝑋 , returning a tuple 𝑋′ that is “collapsed” by removing any now-empty positions.

2.2 A Syntax for Data Structures

We present a syntax for data structures first provided by [8]. While originally used to

describe a variety of probabilistic data structures, the syntax is appropriately general. A syntactic

formalization of data structures in this way not only allows us to elegantly describe numerous data

structures, but also craft security definitions that are directly related to the operations the data

structure allows. We will do exactly this throughout the rest of this work.

We start by fixing three non-empty sets D,R,K of data objects, responses and keys,

respectively. Let Q ⊆ Func(D,R) be a set of allowed queries, and letU ⊆ Func(D,D) be a set

of allowed data-object updates. A data structure is a tuple Π = (Rep,Qry,Up), where:

• Rep: K × D → {0, 1}∗ ∪ {⊥} is a (possibly) randomized representation algorithm, taking as

input a key 𝐾 ∈ K and data object S ∈ D, and outputting the representation repr ∈ {0, 1}∗ of

𝐷, or ⊥ in the case of a failure. We write this as repr← Rep𝐾 (S).

• Qry: K × {0, 1}∗ × Q → R ∪ {⊥} is a deterministic query-evaluation algorithm, taking as

input 𝐾 ∈ K, repr ∈ {0, 1}∗, and qry ∈ Q, and outputting an answer 𝑎 ∈ R, or ⊥ in the case of

a failure. We write this as 𝑎 ← Qry𝐾 (repr, qry).

• Up: K × {0, 1}∗ ×U → {0, 1}∗ ∪ {⊥} is a (possibly) randomized update algorithm, taking as

input 𝐾 ∈ K, repr ∈ {0, 1}∗, and up ∈ U, and outputting an updated representation repr′, or ⊥

in the case of a failure. We write this as repr′← Up𝐾 (repr, up).

Allowing each of the algorithms to take a key 𝐾 permits one to separate (for some security

notion) any secret randomness used across data structure operations, from per-operation

randomness (e.g., generation of a salt). Note that this syntax admits the common case of unkeyed

data structures, by setting K = {𝜀}. Moreover, we can set K = priv to be a private key and allow

the corresponding public key pub to be a public parameter in the case the data structure relies on

asymmetric cryptographic primitives.

21

Both Rep and the Up algorithm can be viewed (informally) as mapping data objects to

representations — explicitly so in the case of Rep, and implicitly in the case of Up — so we

allow Up to make per-call random choices, too.

Note that Up takes a function operating on data objects as an argument, even though Up

itself operates on representations of data objects. This is intentional, to match the way these data

structures generally operate. In a data structure representing a set or multiset, we often think of

performing operations such as ‘insert 𝑥’ or ‘delete 𝑦’. When the set or multiset is not being stored,

but instead modeled via a representation, the representation must transform these operations into

operations on the actual data structure it is using for storage. This is common for operation on

probabilistic data structures.

We also note that the query algorithm Qry is deterministic, which reflects the overwhelming

majority of data structures in practice. Allowing Qry to be randomized would allow for a greater

degree of syntactic expressiveness, particularly for some data structures that provide privacy

guarantees. However, it can make it more difficult to craft correctness properties in that it may be

difficult to discern the errors caused by an adaptive adversary versus “intended” error arising from

the randomized query algorithm. Care must be taken when both designing structures and defining

security properties to ensure issues do not arise from this.

2.3 Streaming Data

A stream data-object ®𝑆 = 𝑒1, 𝑒2, . . . is a finite sequence of elements 𝑒𝑖 ∈ U for some

universeU. The elements of a stream are not necessarily distinct, and the (stream) frequency of

some 𝑥 ∈ U is |{𝑖 : 𝑒𝑖 = 𝑥}|. From the perspective of the PDS, the stream is presented one

element at a time, with no buffering or “look ahead”. That is, processing of a stream is performed

in order, and the processing of 𝑒𝑖 is completed before the processing of 𝑒𝑖+1 may begin; once 𝑒𝑖

has been processed, it cannot be revisited.

2.4 Related Works

We now provide a summary of related work for the classes of data structures that we focus

on in this work.

22

2.4.1 Compact Probabilistic Data Structures and Compact Frequency Estimators

2.4.1.1 Approximate set membership data structures

The first works to explore CPDS in a provable security style focused on the Bloom filter [2].

The Bloom filter admits approximate set-membership queries. The structure is widely used in

many computing contexts, such as databases [19], networking [20], distributed systems [21], and

search [5].

Naor and Yogev were the first to consider settings in which inputs and queries may be chosen

by an adaptive adversary and formally investigate attacks that can occur in such a setting [7]. Their

results show that adversaries can find queries that are guaranteed to be false positive for a given

instantiation of a filter and data collection. They formalized a notion of adversarial correctness for

a modified Bloom filter structure of their own construction and provide a correctness bound for it.

Clayton et al. [8] extend this work by considering stronger adversaries. They allow for the

adversary to insert elements into the structure after the adversary has started to issue queries – that

is, they consider a fully mutable setting. They find that the basic Bloom filter is vulnerable to

adversarial manipulation, which can increase false positives to nearly 100%. To secure it, they

recommend adding a unique salt in an immutable setup, or using a private representation, keyed

hash functions, and insertion thresholds in a mutable setting. Further, they formalize a notion of

adversarial correctness that extends past only Bloom filters, also concretely analyzing the

counting filter [22] and the Count-min sketch [23]. Filić et al. [24, 10] further analyze the

adversarial correctness of Bloom filters and Cuckoo filters (another approximate membership data

structure) in a simulation style security notion. They reach similar conclusions to [8].

2.4.1.2 HyperLogLog

The HyperLogLog (HLL) [12] is a CPDS that provides a compact representation of a set

and can accurately approximate the number of distinct elements in the set (i.e., the set’s

cardinality). Patterson and Raynal [11] provide a provable security treatment of the HLL. They

first present attacks which exploit the use of fixed and publicly computable hash function in the

HLL to cause large cardinality estimate errors. They then show that by switching these hash

23

functions for a secretly keyed primitive that (even in the setting where an adversary has complete

access to the internal state of the structure) the structure remains secure in terms of conserving the

non-adversarial correctness guarantees of the structure. Prior to this, Revirigeo and Ting provide

attacks against the HLL in a model where the adversary has access to a “shadow” device that

mirrors the structure that is being attacked [25]. Patterson and Raynal point out this setting in

unrealistic, but nonetheless improve the attack in this model.

2.4.1.3 Compact frequency estimators

Recall that compact frequency estimators are a class of CPDS that compactly represent a

collection of streaming data (usually modeled as a multiset), and provide approximately correct

frequency estimates (that is, the number of times any particular element has appeared in the

stream). Alternately, compact frequency estimators can be viewed as providing a compact

representation of the frequency distribution of a particular data stream.

As previously stated, Clayton et al. were the first to examine compact frequency estimators

from a provable security perspective [8]. They specifically examined the Count-min sketch and

presented attacks that could cause large frequency estimation error when the internals state of the

structure or the hash functions used by the structure were made available to the adversary. They

were able to prove security of the structure when the internal state of the structure is kept private

and a secretly keyed primitive was used in place of the usual hash functions. However, their

defined adversarial goal was very conservative. Any fixed amount of frequency estimation error

was considered a win for the adversary, rather than an accumulated error that surpassed that of the

non-adversarial correctness guarantee. Further, their construction relied on a thresholding

technique, in which the structure would not accept any more updates after a bounded number of

insertions – something that in practice is unrealistic.

2.4.2 Probabilistic Skipping-Based Data Structures

2.4.2.1 Self-balancing and self-organizing data structures

Although PSDS share conceptual similarities with self-balancing and self-organizing data

structures, they differ fundamentally in their guarantees and methodological approach. Notably,

24

self-organizing data structures have been extensively analyzed under adversarial models where

input sequences are deliberately constructed to degrade performance, whereas the corresponding

analysis for PSDS against adaptive adversaries remains a significant open problem. Similarly,

self-balancing data structures have been studied extensively under worst-case analyses that

inherently account for adversarial strategies.

Self-organizing data structures [26], whether randomized or deterministic, dynamically

adjust their internal ordering of elements to optimize performance based on a given (potentially

adversarial) sequence of input requests. For instance, self-organizing lists may employ the

move-to-front heuristic, where accessed elements are relocated to the front of the list, or the

transpose method, where elements swap positions with their predecessors when accessed.

Similarly, splay trees [27] rotate frequently accessed nodes closer to the root to reduce future

access times. This approach has been shown to be challenging in adaptive adversarial settings,

with (randomized) self-organizing lists incurring a cost at least three times that of the optimal

reordering strategy [28].

Self-balancing data structures, such as Red-Black trees [29] and AVL trees [30],

deterministically ensure an upper-bound on node depth, thereby providing worst-case

performance guarantees for search operations. This deterministic approach is also exemplified by

the deterministic skip list [31], which enforces an optimal structure by carefully promoting

inserted nodes and their neighborhoods to appropriate levels. While these structures guarantee

bounded search path lengths (even in adversarial settings), they require complex re-balancing

mechanisms. In steep contrast, PSDS, such as the treap [32] and the original skip list [33], offer

comparable expected performance, achieved through simple, probabilistic updating mechanisms.

This presents a clear trade-off: deterministic structures provide absolute performance guarantees

at the cost of implementation complexity, while probabilistic alternatives offer simplicity, albeit,

with only probabilistic guarantees. In this work, we investigate whether we can maintain the

implementation simplicity of probabilistic data structures while preserving their performance

guarantees even in adversarial settings.

25

2.4.2.2 Complexity attacks against probabilistic skipping-based data structures

This section provides a concise overview of so-called complexity attacks targeting PSDS.

Previous research has identified clear vulnerabilities in hash tables and skip lists, but these works

lack formal security analysis and rigorous proofs of security when potential mitigations are put

forth. Hash tables have received the most attention, while skip lists have been addressed (to our

knowledge) in only a single paper in this context. Further, to our knowledge, no prior work has

examined complexity attacks against treaps. This absence is consistent with our finding that treaps

possess inherent resistance to such attacks.

Hash tables. Assuming a hash table’s internal hash function has “good” collision-resistance

properties, the amortized average-case complexity of insertions, deletions, and look-ups is 𝑂 (1).

For these efficiency reasons, hash tables are widely used in many applications such as

implementing associative arrays [34] and sets [35] in many programming languages, in cache

systems [36], as well as for database indexing [37].

However, this average-case performance relies on a critical assumption: that the data

inserted into a hash table is independent of the (potentially randomly selected) hash function used

to map key-value pairs to buckets. This assumption fundamentally breaks down in adversarial

scenarios where an attacker can deliberately craft insertions that exploit knowledge of the hash

function or its outputs. Given the ubiquity of hash tables in modern computing systems, numerous

researchers [38, 13, 39, 40, 14, 15, 17] have investigated techniques to compromise the data

structure, forcing operations to degrade from expected 𝑂 (1) to worst-case 𝑂 (𝑛) time complexity,

where 𝑛 represents the total number of elements in the structure. These adversarial approaches

typically constitute complexity attacks that strategically engineer inputs causing multi-collisions –

deliberately exploiting hash function properties to force numerous distinct keys into identical

buckets.

Crosby and Wallach [13] demonstrated denial-of-service attacks via complexity attacks in

applications using hash tables, such as the Bro intrusion detection system [38], by forcing

collisions with weak, fixed hash functions. They suggested universal hashing [41] as a mitigation,

26

though without any formal guarantees. Klink and Walde [14] showed similar CPU exhaustion

attacks on web servers (e.g., PHP, ASP.NET, Java), only using a single carefully crafted HTTP

request. Aumasson et al.[15] further revealed vulnerabilities in hash tables using

non-cryptographic hash functions (like MurmurHash and CityHash[42]), proposing SipHash [15]

as a secure alternative – which is widely adopted but lacks a holistic formal analysis as it comes to

security of hash tables in adversarial settings. Complexity attacks have also been shown effective

in causing denial-of-service against flow-monitoring systems [40]. Further, the use of salting was

undermined by remote timing attacks [39]. Recently, Bottinelli et al. [17] found nearly a third of

QUIC implementations vulnerable to similar attacks. Despite these works and many proposed

defenses, no formal framework exists for the provable security of (keyed) hash tables against

adaptive adversaries. We address this gap by introducing the first rigorous security model for this

setting, along with formal proofs establishing bounds on adversarial runtime degradation.

Skip lists. In the original skip list paper [33], it is noted that it is imperative to keep the

internal structure of the skip list hidden. Otherwise, adversarial users could observe the levels of

individual elements and delete any element at a level greater than zero (the bottom layer). This

would degenerate the structure to a simple linked list and force worst-case run time (𝑂 (𝑛)) on

subsequent operations after these deletions occur.

Nussbaum and Segal [18] demonstrate that private internal structure alone fails to protect

skip lists against this style of attack. They present a (remote) timing attack that correlates query

response times with element heights, ultimately allowing adversaries to force all elements in the

structure to the lowest level. Their adversarial model is notably limited: the adversary cannot

access the internal skip list structure, the initial data collection is non-adversarially selected, and

the original data collection must be preserved during the attack. While they propose a structure

called the splay skip list as a countermeasure, their solution lacks formal security analysis. Our

work presents a significantly stronger adversarial model and provides a construction with formal

security guarantees. We give an extensive commentary on [18] and vulnerabilities below.

27

Nussbaum and Segal [18] show that keeping the internal structure of the skip list private is

insufficient to protect against complexity attacks. We discuss their attack in more detail because it

is instructive in light of how to model attacks and prove the properties of robust alternatives.

Nussbaum and Segal present a timing attack that allows an adversary to discover the levels at

which specific elements reside through a series of queries and, in turn, correlate the time it takes

to answer a query on a given element with the height of that element. After the heights of the

elements are discovered, the simple deletion attack can be mounted.

The specific attack they present includes several assumptions.

• The size of the collection represented by the structure, 𝑛, is known to the adversary, A.

• Each node in the structure holds a unique value.

• The well-ordered universeU is known and is of size 𝑂 (𝑛).

• The runtime of the search algorithm in the structure is consistent. That is, a search for the

same value will yield the same runtime each time the search is executed.

Further, their adversarial model is the following.

• A is given a skip list containing some collection of data, 𝐷 that was selected by some

(non-adversarial) process.

• The adversary, A does not have access to the internal structure of the skip list at any point.

A can only interact with the structure through oracles that provide search, insertion, and

deletion functionality to the structure that is under attack.

• After the completion of the attack,A is required to have altered the skip list it interacts with

such that it contains the original 𝐷 represented by the structure (before any adversarial

interaction occurs) and the level that all (or nearly all) the elements reside at is the first.

28

The attack in this setting works by first running the timing attack to discover the level at

which the elements in the structure exist (and, on the first iteration, which elements fromU are

present in the structure). Then all elements with a level greater than zero (exist at high level than

the initial later) are removed. This set of removed elements are reinserted. These steps are

repeated until (nearly) all the elements in the structure reside at level zero and the original

collection represented by the structure is conserved – thereby, degrading the representation of this

collection to (nearly) a flat singly-linked list.

As a countermeasure, the splay skip list structure is presented [18]. The approach is to swap

the levels of certain elements during a search query, thereby preventing the adversary from

discovering information about the level where any particular element resides (as they are not

fixed). The structure is believed to prevent the timing attack from being effective, but no formal

analysis of the security of the structure is given.

We again note that the adversarial setting that is given in [18] is rather limited. It assumes

the adversary does not have access to the internal structure of the skip list, nor the ability to

control the initial collection of data the skip represents. Further, it requires the adversary to

conserve the initial data collection 𝐷 that the skip list represents before any adversarial interaction

occurs. We present a much stronger adversarial model in our work and a construction that satisfies

this definition.

The authors propose a new structure that is believed to prevent the timing attack they

present; however, as previously stated, no formal security analysis is given. Indeed, the splay skip

list is still vulnerable to attacks, as demonstrated by the following scenario. Consider a

collection 𝐷 of elements represented by a splay skip list, where a total order is defined on the

universe in which 𝐷 resides. Suppose there exists an element 𝑑 such that 𝑥1 ≤ 𝑑 ≤ 𝑥2 for every

pair of elements 𝑥1, 𝑥2 ∈ 𝐷, where 𝑥1 ≠ 𝑥2. For a specific order, 𝑥1 ≤ 𝑑1 ≤ 𝑥2 ≤ 𝑑2 ≤ . . .

for 𝑥𝑖 ∈ 𝐷 and 𝑑𝑖 ∉ 𝐷, an adversary can exploit this by conducting search queries for the

intermediary elements 𝑑𝑖.

29

Unlike searches for elements 𝑥𝑖 ∈ 𝐷, which would trigger the splay mechanism, searches for

these intermediary elements 𝑑𝑖 ∉ 𝐷 bypass the splay security mechanism. The runtimes required

to (not) find these intermediate nodes, however, still uniquely determine the height of elements

contained in 𝐷.1 After the discovery of the heights of the elements contained in 𝐷, the trivial

deletion attack could be carried out as before.

1Compared to searching for elements 𝑥1, 𝑥2, . . . as described in the original attack, the runtimes for search-
ing 𝑑1, 𝑑2, . . . only change by a constant factor (one extra step to find that the 𝑑𝑖 ∉ 𝑆) .

30

CHAPTER 3
COMPACT FREQUENCY ESTIMATORS IN ADVERSARIAL ENVIRONMENTS

In this chapter, we focus on CPDS that can be used to estimate the number of times any

particular element 𝑥 appears in a collection of data, i.e., the frequency of 𝑥. Such compact

frequency estimators (CFEs) are commonly used in streaming settings, to identify elements with

the largest frequencies — so-called heavy hitters or elephants. Finding extreme elements is

important for network planning [43], network monitoring [44], recommendation systems [45], and

approximate database queries [46], to name a few applications.

The Count-min Sketch (CMS) [23] and HeavyKeeper (HK) [47] structures are two CFEs

that we consider, in detail. The CMS structure has been widely applied to a number of problems

outlined above. Details on these applications are thoroughly examined in the survey paper by

Sigurleifsson et al. [48]. The HK structure is the CFE of choice in the RedisBloom module [46], a

component of the Redis database system [49].

Of particular interest to us is the 2019 ACM SIGSAC work of Clayton, Patton, and

Shrimpton [8] that both furthers the adversarial analysis on Bloom filters and also presents a

general model for analyzing probabilistic data structures for provable security. This paper gives a

first look at the security of the Count-min sketch in adversarial environments. However, in this

paper a very conservative security model for the CMS was used, which counted any

overestimation of a particular element as an adversarial gain, rather than tying the security to the

non-adaptive guarantees of the structure. Further, a thresholding mechanism is used to achieve

security for the CMS, a solution which we deem untenable for real world uses of the CMS.

As is the case for Bloom filters, HyperLogLog and other CPDS, the accuracy guarantees for

CFEs effectively assume that the data they represent were produced by a non-adaptive strategy.

Our work explores the accuracy of CMS and HK estimates when the data is produced by adaptive

adversarial strategies (i.e., adaptive attacks). We give explicit attacks that aim to make

as-large-as-possible gaps between the estimated and true frequencies of data elements. We give

concrete, not asymptotic, expressions for these gaps, in terms of specific adversarial resources

(i.e., oracle queries), and support these expressions with experimental results. And our attacks fit

31

within a well-defined “provable security”-style attack model that captures four adversarial access

settings: whether the CFE representations are publicly exposed (at all times) or hidden from the

adversary, and whether the internal hash functions are public (i.e., computable offline) or private

(i.e. visible only, if at all, by online interaction with the structure).

In this work we draw explicit attention to the fact that compressing probabilistic data

structures, and in particular frequency estimators, were not designed with security in mind by

presenting attacks that degrade the correctness of the query responses these structures provide.

Our findings are negative in all cases. No matter the combination of public and private, a

well resourced adversary can force CMS and HK estimates to be arbitrarily far from the true

frequency. As one example of what this means for larger systems, things that have never appeared

in the stream can be made to look like heavy hitters (in the case of CMS), and legitimate heavy

hitters can be made to disappear entirely (in the case of HK). This is somewhat surprising in the

“private-private” setting, where the attack can only gain information about the structure and its

operations via frequency estimate queries. Of course, there are differences in practice: when

attacks are forced to be online, they are easier to detect and throttle, so the query-resource terms in

our analytical results are likely capped at smaller values than when some or all of an attack can

progress offline.

Our attacks exploit structural commonalities of CMS and HK. At their core, each of these

processes incoming data elements by mapping them to multiple positions in an array of counters,

and these are updated according to simple, structure-specific rules. Similarly, when frequency

estimation (or point) queries are made, the queried element is mapped to its associated positions,

and the response is computed as a simple function of values they hold. So, our attacks concern

themselves with finding cover sets: given a target 𝑥, find a small set of data elements (not

including 𝑥) that collectively hash to all of the positions associated with 𝑥. Intuitively, inserting a

cover set for 𝑥 into the stream will give the structure incorrect information about 𝑥’s relationship

to the stream, causing it to over- or underestimate its frequency.

32

The existence of a cover set in the represented data is necessary for producing frequency

estimation errors in HK, and both necessary and sufficient in CMS. Sadly, our findings suggest

that preventing an adaptive adversary from finding such a set seems futile, no matter what target

element is selected. The task can be made harder by increasing the structural parameters, but this

quickly leads to structures whose size makes them unattractive in practice, i.e., linear in the length

of the stream.

We now motivate a robust CFE. Say that the array 𝑀 in CMS has 𝑘 rows and 𝑚 counters

(columns) per row. The CMS estimate for 𝑥 is 𝑛̂𝑥 = min𝑖∈[𝑘]{𝑀 [𝑖] [𝑝𝑖]}, where 𝑝𝑖 is the position

in row 𝑖 to which 𝑥 hashes. In the insertion-only stream model it must be that 𝑛̂𝑥 ≥ 𝑛𝑥 , where 𝑛𝑥 is

the true frequency of 𝑥. To see this, given an input stream ®𝑆, let

𝑉 𝑖𝑥 = {𝑦 ∈ ®𝑆 | 𝑦 ≠ 𝑥 and ℎ𝑖 (𝑦) = 𝑝𝑖} be the set of elements that hash to the same counter as 𝑥, in

the 𝑖-th row. Then we can write 𝑀 [𝑖] [𝑝𝑖] = 𝑛𝑥 +
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦, where the 𝑛𝑦 > 0 are the true

frequencies of the colliding 𝑦s. Viewed this way, we see that the CMS estimate 𝑛̂𝑥 minimizes the

impact of “collision noise”, i.e., 𝑛̂𝑥 = 𝑛𝑥 +min𝑖∈[𝑘]{
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦}.

We could improve this estimate if we knew some extra information about the value of the

sum, or the elements that contribute to it. Let’s say that, with a reasonable amount of extra space,

we could compute 𝐶𝑖 = 𝜖𝑖
(∑

𝑦∈𝑉 𝑖𝑥 𝑛𝑦
)

for some 𝜖𝑖 ∈ [0, 1] that is bounded away from zero. Then

we would improve the estimate to 𝑛̂𝑥 = 𝑛𝑥 +min𝑖∈[𝑘]
{
(1 − 𝜖𝑖)

(∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦

)}
. How might we do

this? Consider the case that for some row 𝑖 ∈ [𝑘] there is an element 𝑦∗ ∈ 𝑉 𝑖𝑥 that dominates the

collision noise, e.g. 𝑛𝑦∗ = (1/2)
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦. Then even the ability to accurately estimate 𝑛𝑦∗ would

give a significant improvement in accuracy of 𝑛̂𝑥 , by setting 𝐶𝑖 to this estimate. It turns out that

HK provides something like this. It maintains a 𝑘 × 𝑚 matrix 𝐴, where 𝐴[𝑖] [𝑗] holds a pair

(fp, cnt). In the first position is a fingerprint of the current “owner” of this position, and,

informally, cnt is the number of times that 𝐴[𝑖] [𝑗] “remembers” seeing the current owner.

(Ownership can change over time, as we describe in the body.) If we use the same hash functions

to map element 𝑥 into the same-sized 𝑀 and 𝐴, then there is possibility of using the information

33

at 𝐴[𝑖] [𝑝𝑖] to reduce the additive error (w.r.t. 𝑛𝑥) in the value of 𝑀 [𝑖] [𝑝𝑖]. This observation

forms the kernel of our new Count-Keeper structure.

That is, we propose a new structure that, roughly speaking, combines equally sized (still

compact) CMS and HK structures, and provide analytical and empirical evidence that it reduces

the error (by at least a factor of two) that can be induced once a cover set is found. It also requires

a type of cover set that is roughly twice as expensive (in terms of oracle queries) to find.

Moreover, it can effectively detect when the reported frequency of an element is likely to have

large error. In this way we can dampen the effect of the attacks, by catching and raising a flag

when a cover set has been found and is inserted many times to induce a large frequency error

estimation on a particular element.

Intuitively, our Count-Keeper (CK) structure has improved robustness against adaptive

attacks because CMS can only overestimate the frequency of an element, and HK can only

underestimate the frequency (under a certain, practically reasonable assumption). We

experimentally demonstrate that CK is robust against a number of attacks we give against the

other structures. Moreover, it performs comparably well if not better than the other structures we

consider in frequency estimation tasks in the non-adversarial setting.

3.1 Formal Attack Model

To enable precise reasoning about the correctness of frequency estimators when data

streams may depend, in arbitrary ways, on the internal randomness of the data structure, we give a

pseudocode description of our attack model in Figure 3-1. The experiment parameters 𝑢, 𝑣

determine whether the adversary A is given 𝐾 and repr, respectively. Thus, there are actually

four attack models encoded into the experiment.

The adversary is provided a target 𝑥 ∈ U, and given access to oracles that allow it to update

the current representation (Up) — in effect, to control the data stream — and to make any of the

queries permitted by the structure (Qry). We abuse notation for brevity and write Up(𝑒) to mean

an insertion of 𝑒 into the structure and Qry(𝑒) to get a point query on 𝑒 for some element 𝑒 ∈ U.

Note that when 𝑣 = 0, the Up-oracle leaks nothing about updated representation, so that it remains

34

Atkerr-fe[u,v]
Π,U (A)

1 : ®𝑆 ← ∅;𝐾 ←← K
2 : repr←← Rep𝐾 (®𝑆)
3 : kv← ⊤; rv← ⊤
4 : if 𝑢 = 1 : kv← 𝐾

5 : if 𝑣 = 1 : rv← repr
6 : 𝑥 ←←U
7 : done←← AHash,Up,Qry (𝑥, kv, rv)
8 : 𝑛𝑥 ← qry𝑥 (®𝑆)
9 : 𝑛̂𝑥 ← Qry𝐾 (repr, qry𝑥)

10 : return |𝑛̂𝑥 − 𝑛𝑥 |

Up(up)

1 : repr′ ←← Up𝐾 (repr, up)
2 : ®𝑆 ← up(®𝑆)
3 : repr← repr′

4 : if 𝑣 = 0 : return ⊤
5 : return repr

Qry(qry)

1 : return Qry𝐾 (repr, qry)

Hash(𝑋)

1 : if 𝑋 ∉ X : return ⊥
2 : if 𝐻 [𝑋] = ⊥
3 : 𝐻 [𝑋] ←← Y
4 : return 𝐻 [𝑋]

Figure 3-1. The ERR-FE (ERRor in Frequency Estimation) attack model. When experiment parameter
𝑣 = 1 (resp. 𝑣 = 0) then the representation is public (resp. private); when 𝑢 = 1 (resp. 𝑢 = 0)
then the structure key 𝐾 is rendered public (resp. private). The experiment returns the absolute
difference between the true frequency 𝑛𝑥 of an adversarially chosen 𝑥 ∈ U, and the estimated
frequency 𝑛̂𝑥 . The Hash oracle computes a random mapping X → Y (i.e., a random oracle),
and is implicitly provided to Rep, Up and Qry.

“private” throughout the experiment. The adversary (and, implicitly, Rep,Up,Qry) is provided

oracle access to a random oracle Hash : X → Y, for some structure-dependent sets X,Y. The

output of the experiment is the absolute error between the true frequency 𝑛𝑥 of 𝑥 in the adversarial

data stream, and the structure’s estimate 𝑛̂𝑥 of 𝑛𝑥 .

Conventionally, one would define an “advantage” function over the security experiment, and

there are various interesting ways this could be done. As examples, one could parameterize by a

threshold function 𝑇 : Z→ Z, and have the advantage measure the probability that the value

|𝑛̂𝑥 − 𝑛𝑥 | > 𝑇 (𝑞𝑈); or, one could compare this value to known non-adaptive error guarantees. As

we will not be proving the security of any structures, we use Atkerr-fe[u,v]
Π

(·) as a precise

description of the attack setting. We will explore lower bounds on the values returned by the

experiment, for explicit attacks that we give.

35

We capture various settings related to the view of the adversary in our attack interface. We

have a setting in which the data structure representation is kept private from the adversary, and we

also have a setting in which the specific choice of hash functions selected by a particular

representation are kept private from the adversary. These settings can be examined together,

separately, or both can be disregarded and the adversary can be given a “full view”. That is we

consider when the both the representation and hash functions are private, when the representation

is public and the hash functions are private, when the representation is private and the hash

functions are public, and when both the representation and hash functions are public.

In practice the private representation setting occurs due to suppression of information

leaked by the oracles. In particular in this setting, the Rep and Up oracles return nothing, thus

leaking nothing about the underlying data representation. Further, we make hash functions

“private” by keying them with a (non-empty) randomly generated secret key.

3.2 Count-min Sketch

Rep𝐾 (S)

1 : 𝑀 ← zeros(𝑘, 𝑚)
2 : for 𝑥 ∈ S
3 : 𝑀 ← Up𝐾 (𝑀, up𝑥)
4 : return 𝑀

Up𝐾 (𝑀, up𝑥)

1 : (𝑝1, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥)
2 : for 𝑖 ∈ [𝑘]
3 : 𝑀 [𝑖] [𝑝𝑖] += 1
4 : return 𝑀

Qry𝐾 (𝑀, qry𝑥)

1 : (𝑝1, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥)
2 : return min

𝑖∈[𝑘]
{𝑀 [𝑖] [𝑝𝑖]}

Figure 3-2. Keyed count-min sketch structure CMS[𝑅, 𝑚, 𝑘] admitting point queries for any 𝑥 ∈ U. The
parameters are integers 𝑚, 𝑘 ≥ 0, and a keyed function 𝑅 : K ×U → [𝑚]𝑘 that maps
data-object elements (encoded as strings) to a vector of positions in the array 𝑴. A concrete
scheme is given by a particular choice of parameters.

Figure 3-2 gives a pseudocode description of the count-min sketch (CMS), in our syntax.

An instance of CMS consists of a 𝑘 × 𝑚 matrix 𝑀 of (initially zero) counters, and a mapping 𝑅

between the universeU of elements and [𝑚]𝑘 . An element 𝑥 is added to the CMS representation

36

by computing 𝑅(𝐾, 𝑥)= (𝑝1, 𝑝2, . . . , 𝑝𝑘), and then adding 1 to each of the counters at 𝑀 [𝑖] [𝑝𝑖].

Traditionally, it is assumed that (𝑝1, . . . , 𝑝𝑘)= (ℎ1(𝑥), . . . , ℎ𝑘 (𝑥)) where the ℎ𝑖 are sampled at

initialization from some family 𝐻 of hash functions, but we generalize here to make the exposition

cleaner, and to allow for the mapping to depend upon secret randomness (i.e., a key 𝐾).

The point query Qry(qry𝑥) returns 𝑛̂𝑥= min𝑖∈[𝑘]{𝑀 [𝑖] [𝑝𝑖]}. We note that (in the

insertion-only model) it must be that 𝑛̂𝑥 ≥ 𝑛𝑥 . To see this, let 𝑉 𝑖𝑥= {𝑦 ∈ ®𝑆 | 𝑦 ≠ 𝑥 and 𝑅(𝑦) [𝑖] = 𝑝𝑖}

be the set of elements that “collide” with 𝑥’s counter in the 𝑖-th row. Then we can write

𝑀 [𝑖] [𝑝𝑖]= 𝑛𝑥 +
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦, where 𝑛𝑦 ≥ 0. Viewed this way, we see that a CMS estimate 𝑛̂𝑥

minimizes the “collision noise”, i.e., 𝑛̂𝑥= 𝑛𝑥 +min𝑖∈[𝑘]{
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦}.

For any 𝜖, 𝛿 ≥ 0, any 𝑥∈U, and any stream ®𝑆 (overU) of length 𝑁 , it is guaranteed that

Pr [𝑛̂𝑥 − 𝑛𝑥 > 𝜖𝑁] ≤ 𝛿 when: (1) 𝑘 = ⌈ln 1
𝛿
⌉, 𝑚 = ⌈ 𝑒

𝜖
⌉, and (2)

𝑅(𝐾, 𝑥) = (ℎ1(𝐾 ∥ 𝑥), ℎ2(𝐾 ∥ 𝑥), . . . , ℎ𝑘 (𝐾 ∥ 𝑥)) for ℎ𝑖 that are uniformly sampled from a

pairwise-independent hash family 𝐻 [23]. Implicitly, there is a third requirement, namely (3) the

stream and the target 𝑥 are independent of the internal randomness of the structure (i.e., the coins

used to sample the ℎ𝑖). This is equivalent to saying that the stream ®𝑆 and the target 𝑥 are

determined before the random choices of the structure are made.

3.3 HeavyKeeper

Like CMS, an instance of the HeavyKeeper data structure is parameterized by positive integers

𝑘, 𝑚, and a function 𝑅 : K ×U → [𝑚]𝑘 ; in addition, it is parameterized by real-valued 𝑑 ∈ (0, 1],

and fingerprinting function 𝑇 : K ×U → {0, 1}𝑛 for some fixed 𝑛 > 0. The HK structure (see the

pseudocode in Figure 3-3) maintains a 𝑘 × 𝑚 matrix 𝐴. However, each 𝐴[𝑖] [𝑗] holds a pair

(fp, cnt), initialized as (★, 0) where ★ is a distinguished symbol. Informally, for a given stream ®𝑆,

any 𝑧 ∈ ®𝑆 such that 𝐴[𝑖] [𝑗] .fp = 𝑇 (𝐾, 𝑧) is an owner of this position; there may be more than one

such owner at a time, if 𝑇 (𝐾, ·) admits many collisions. Ownership can change as a stream is

processed: if some 𝑦 arrives whose fingerprint is different than that of the current owner(s), then

the current (positive) value 𝑐 of 𝐴[𝑖] [𝑗] .cnt is decremented with probability 𝑑−𝑐. Loosely,

decrementing 𝑐 is akin to 𝐴[𝑖] [𝑗] “forgetting” a prior arrival of its current owner(s); with this

37

Rep𝐾 (S)

1 : // initialise 𝑘 × 𝑚 (fp,cnt) 2-d array

2 : for 𝑖 ∈ [𝑘]
3 : 𝐴[𝑖] ← [(★, 0)] × 𝑚
4 : for 𝑥 ∈ S
5 : 𝐴← Up𝐾 (𝐴, up𝑥)
6 : return 𝐴

Qry𝐾 (𝐴, qry𝑥)

1 : (𝑝1, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥)
2 : fp𝑥 ← 𝑇 (𝐾, 𝑥)
3 : cnt𝑥 ← 0
4 : for 𝑖 ∈ [𝑘]
5 : if 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥
6 : cnt←𝐴[𝑖] [𝑝𝑖] .cnt
7 : cnt𝑥←max {cnt𝑥 , cnt}
8 : return cnt𝑥

Up𝐾 (𝐴, up𝑥)

1 : (𝑝1, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥)
2 : fp𝑥 ← 𝑇 (𝐾, 𝑥)
3 : for 𝑖 ∈ [𝑘]
4 : if 𝐴[𝑖] [𝑝𝑖] .fp ∉{fp𝑥 , ★}
5 : 𝑟 ←← [0, 1)
6 : if 𝑟 ≤ 𝑑𝐴[𝑖] [𝑝𝑖].cnt

7 : 𝐴[𝑖] [𝑝𝑖] .cnt−= 1
8 : // overtake the counter if 0

9 : if 𝐴[𝑖] [𝑝𝑖] .cnt = 0
10 : 𝐴[𝑖] [𝑝𝑖] .fp← fp𝑥
11 : // increase the count if fp = fp𝑥

12 : if 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥
13 : 𝐴[𝑖] [𝑝𝑖] .cnt+= 1
14 : return 𝐴

Figure 3-3. Keyed structure HK[𝑅,𝑇, 𝑚, 𝑘, 𝑑] supporting point-queries for any potential stream
element 𝑥 ∈ U (qry𝑥). The parameters are a function 𝑅 : K ×U → [𝑚]𝑘 , a function
𝑇 : K ×U → {0, 1}𝑛 for some desired fingerprint length 𝑛, decay probability 0 < 𝑑 ≤ 1, and
integers 𝑚, 𝑘 ≥ 0.

viewpoint, the value of 𝐴[𝑖] [𝑗] .cnt is the number of times that this position “remembers” seeing

its current owner(s). If 𝑦 causes that number to become zero, then it becomes an owner: the stored

fingerprint is changed to fp𝑦 = 𝑇 (𝐾, 𝑦), and the counter is set to 1. Note that for CMS, 𝑀 [𝑖] [𝑗]

“remembers” the total number of elements that it observed, but nothing about which elements.

This observation will motivate our Count-Keeper structure, later on.

The HK provides frequency estimates via point-queries. Writing (𝑝1, . . ., 𝑝𝑘) ← 𝑅(𝐾, 𝑥)

and fp𝑥←𝑇 (𝐾, 𝑥), a point-query for 𝑥 returns max
{
𝐴[𝑖] [𝑝𝑖] .cnt| 𝐴[𝑖] [𝑝𝑖] .fp= fp𝑥 , 𝑖∈ [𝑘]

}
, i.e.,

the largest counter value among those positions in 𝐴 that “remember” having seen 𝑥. If that set is

empty, the point-query returns 0.

Yang et al.[47] do state a probabilistic guarantee on the size of estimation errors, under an

assumption that each 𝐴[𝑖] [𝑗] has one and only one owner for the duration of the stream, but the

38

statement is insufficiently precise and its proof is flawed, so we will not quote it. In the full version

of our paper [50], we recover a meaningful result (under their assumptions).

3.4 Attacks on CMS and HK

In the following discussion of attacks against CMS and HK in our formal model, we will

implement the mappings 𝑅 : U→ [𝑚]𝑘 and 𝑇 : K × {0, 1}∗→{0, 1}𝑛 via calls to the

Hash-oracle. In detail, given some unambiguous encoding function ⟨·, ·, ·⟩, for CMS we set

𝑅(𝐾, 𝑥) = (Hash(⟨1, 𝐾, 𝑥⟩),Hash(⟨2, 𝐾, 𝑥⟩, . . .,Hash(⟨𝑘, 𝐾, 𝑥⟩))) , and for HK, we set

𝑅(𝐾, 𝑥) [𝑖] =Hash(⟨“cnt”, 𝑖, 𝐾, 𝑥⟩) and 𝑇 (𝐾, 𝑥) =Hash(⟨“fp”, 𝑘 + 1, 𝐾, 𝑥⟩). Note that the

traditional analysis of CMS correctness assumes that the row-wise hash functions are sampled

(uniformly) from a pairwise-independent family of functions, whereas our modeling treats the

row-wise hash functions as 𝑘 independent random functions fromU→ [𝑚]. This makes the

adversary’s task more difficult, as our attacks cannot leverage adaptivity to exploit structural

characteristics of the hash functions. For the HK, the strings “cnt” and “fp” provide domain

separation, and we implicitly assume that the outputs of calls to the Hash-oracle can be

interpreted as random elements of [𝑚]𝑘 when called with “cnt”, and as random elements of the

appropriate fingerprint-space,e.g., {0, 1}𝑛 for some constant 𝑛 ≥ 0, when called with “fp”.1

3.4.1 Cover Sets

Say 𝑛̂𝑥 is the CMS estimate. As noted in Section 3.2, the estimate

𝑛̂𝑥 = 𝑛𝑥 +min𝑖∈[𝑘]{
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦}; thus 𝑛̂𝑥 = 𝑛𝑥 if there exists an 𝑖 ∈ [𝑘] such that

∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦 = 0. Since

𝑛𝑦 > 0 for any 𝑦 ∈ 𝑉 𝑖𝑥 , we can restate this as 𝑛̂𝑥 > 𝑛𝑥 if and only if 𝑉1
𝑥 , . . . , 𝑉

𝑘
𝑥 are all non-empty.

When this is the case, the union C =
⋃
𝑖∈[𝑘] 𝑉

𝑖
𝑥 contains a set of stream elements that “cover” the

counters 𝑀 [𝑖] [𝑝𝑖] associated to 𝑥. Since the presence of a covering C within the stream is

necessary (and sufficient) for creating a frequency estimation error for the CMS, we formalize the

idea of a “cover” in the following definition.
1This separation could be more directly handled by augmenting the attack model with an additional hashing oracle,

but for simplicity and ease of reading, we chose not to do so.

39

Definition 1. LetU be the universe of possible stream elements. Fix 𝑥 ∈U, 𝑟 ∈ Z, and Y ⊆𝑈.

Then a set C = {𝑦1, 𝑦2, . . ., 𝑦𝑡} is an (Y, 𝑥, 𝑟)-cover if: (1) C ⊆ Y\{𝑥}, and (2)∀𝑖 ∈ [𝑘]

∃ 𝑗1, . . . , 𝑗𝑟 ∈ [𝑡] such that 𝑅(𝐾, 𝑥) [𝑖] = 𝑅(𝐾, 𝑦 𝑗1) [𝑖], . . ., 𝑅(𝐾, 𝑥) [𝑖] = 𝑅(𝐾, 𝑦 𝑗𝑟) [𝑖]. ♦

For the CMS, we will be interested in Y =U, 𝑟 = 1, and we will shorten the notation to

calling this a 1-cover (for 𝑥), or just a cover. For the HK, we will still be interested in 𝑟 = 1, but

with a different set Y. In particular, HK has a fingerprint function 𝑇 (𝐾, ·), and we define the set

FP(𝐾, 𝑥) = {𝑦 ∈ U | 𝑇 (𝐾, 𝑦) ≠𝑇 (𝐾, 𝑥)}. We will typically write fp𝑥 as shorthand for the result

of computing 𝑇 (𝐾, 𝑥), dropping explicit reference to the key 𝐾;

In analyzing their HK structure, Yang et al. [47], rely on there being “no fingerprint

collisions”, to ensure that HK have only one-sided error. (In general, the HK returned estimates

may over- or underestimate the true frequency.) But, no precise definition of this term is given.

We define it (by negation) as follows: stream ®𝑆 does not satisfy the no-fingerprint collision (NFC)

condition with respect to 𝑥 (and key 𝐾) if there exists 𝑦, 𝑧 ∈ ®𝑆∥𝑥 such that 𝑇 (𝐾, 𝑦) = 𝑇 (𝐾, 𝑧)

and ∃𝑖 such that 𝑅(𝐾, 𝑦) [𝑖] = 𝑅(𝐾, 𝑧) [𝑖]; otherwise ®𝑆 does satisfy the NFC condition with respect

to 𝑥 (and 𝐾). In other words, ®𝑆∥𝑥 cannot contain distinct elements that have the same fingerprint

and share a counter position. Our analysis treats the fingerprint function 𝑇 (𝐾, ·) and position hash

functions 𝑅(𝐾, ·) [𝑖] as random oracles, the particular value of 𝐾 will not matter, only whether or

not it is publicly known. As such, explicit mention of 𝐾 can be elided without loss of generality,

and we shorten FP(𝐾, 𝑥) to FP𝑥 . Further, in the random oracle model the fingerprint

computation and row position computation are independent, so the probability of their

conjunction is much smaller than the simple “birthday bound” event on fingerprint collisions.

Anyway, for our HK analysis (Section 3.4.3), we will be interested in (F P𝑥 , 𝑥, 1)-covers, which

are just (U, 𝑥, 1)-covers under NFC condition.

When analyzing our new CK structure (Section 3.5), which inherits the fingerprint function

from HK, we will be interested in (F P𝑥 , 𝑥, 2)-covers, as 𝑟 = 1 will no longer enable attacks to

drive up estimation error.

40

Observe that even when the stream elements and the target 𝑥 are independent of the internal

randomness of the structure, a sufficiently long stream will almost certainly contain a cover for 𝑥.

For example, for CMS, this results in 𝑛̂𝑥 being an overestimate of 𝑛𝑥 . How long the stream needs

to be for this to occur is what we explore next. Each of CMS, HK and CK use a mapping 𝑅(𝐾, ·)

to determine the positions to which stream elements are mapped. Let 𝐿𝑟
𝑖

be the number of

distinct-element evaluations of 𝑅(𝐾, .) needed to find elements covering the target’s counter in

the 𝑖th row 𝑟 times. Then 𝐿𝑟
𝑖

is a negative binomial random variable with success probability

𝑝 = 1
𝑚

and Pr[𝐿𝑟
𝑖
= 𝑧] =

(𝑧−1
𝑧−𝑟

)
(1 − 𝑝)𝑧−𝑟 𝑝𝑟 .

This is because 𝐿𝑟
𝑖

counts the minimal number of evaluations needed to find 𝑟 elements

𝑦1, . . ., 𝑦𝑟 with 𝑅(𝐾, 𝑦 𝑗) [𝑖] = 𝑝𝑖. This holds for any 𝑖 ∈ [𝑘], and all 𝐿𝑟
𝑖

are independent. Thus,

letting 𝐿𝑟 = max{𝐿𝑟1, 𝐿
𝑟
2, . . ., 𝐿

𝑟
𝑘
}, we have

Pr[𝐿𝑟 ≤ 𝑧]=
𝑘∏
𝑖 = 1

Pr[𝐿𝑟𝑖 ≤ 𝑧]=
(
𝑝𝑟

𝑧−𝑟∑︁
𝑡 = 0

(
𝑡 + 𝑟 − 1

𝑡

)
(1 − 𝑝)𝑡

) 𝑘
. (3-1)

Note that relation (3-1) fully defines 𝑧 for any fixed values of Pr [𝐿𝑟 ≤ 𝑧], 𝑚, 𝑘, 𝑟 . Thus, we

will be able to relate Pr
[
Cover𝑟𝑥

]
and Pr [𝐿𝑟 = 𝑧] via the resources used in attacks, e.g., Cover𝑟𝑥

occurs iff 𝐿𝑟 ≤ 𝑓𝑚,𝑘,𝑟 (𝑞𝐻 , 𝑞𝑈 , 𝑞𝑄) for some function 𝑓𝑚,𝑘,𝑟 of the adversarial resources.

When 𝑟 = 1, this simplifies to The 𝐿1
𝑖

are geometric random variables with success

probability 𝑝, and

Pr[𝐿1 ≤ 𝑧] =
(
(1 − 𝑞) (1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑧−1)

) 𝑘
= (1 − 𝑞𝑧)𝑘 (3-2)

with 𝑞 = 1 − 𝑝. When 𝑟 = 2 we arrive at a more complicated expression

Pr[𝐿2 ≤ 𝑧] = (1 − 𝑧𝑞𝑧−1 + (𝑧 − 1)𝑞𝑧)𝑘 . (3-3)

41

One can show that E[𝐿1] = ∑∞
𝑧=0(1 − (1 − 𝑞𝑧)𝑘); for typical values of 𝑚, we have the very

good approximation E[𝐿1] ≈ 𝑚𝐻𝑘 , 𝐻𝑘 being the 𝑘-th harmonic number. 2 This constant depends

only on parameters 𝑚 and 𝑘 .

3.4.2 Cover-Set Attacks on CMS

In our attack model, if the mapping 𝑅(𝐾, ·) is public, we may use the Hash oracle (only) to find a

cover set for the target 𝑥 “locally”, i.e., the step is entirely offline. When this is not the case, we

use a combination of queries to the Up and Qry oracles to signal when a cover set exists among

the current stream of insertions; then we make additional queries to learn a subset of stream

elements that yield a cover.

Before exploring each setting, we build up some general results. Let Cover𝑟𝑥 be the event

that in the execution of Atkerr-fe[u,v]
Π

(A), the adversary queries the Up-oracle with up𝑒𝑖 , . . ., up𝑒𝑡
and 𝑒1, . . ., 𝑒𝑡 is an 𝑟-cover for the target. For concision, define random variable

Err = Atkerr-fe[u,v]
Π

(A). We will mainly focus on E[Err] when analyzing the behavior of

structures, so here we observe that the non-negative nature of Err allows us to write

E[Err] = ∑
𝜉>1 Pr [Err ≥ 𝜉]. In determining the needed probabilities, it will be beneficial to

condition on Cover𝑟𝑥 , as this event (for particular values of 𝑟) will be crucial for creating errors.

Our attacks against CMS (and, later, HK and CK) have two logical stages. The first stage

finds the necessary type of cover for the target 𝑥, and the second stage uses the cover to drive up

the estimation error. The first stage is the most interesting, as the second will typically just insert

the cover as many times as possible for a given resource budget (𝑞𝐻 , 𝑞𝑈 , 𝑞𝑄). We note that

whether or not the first stage is adaptive depends on the public/private nature of the structure’s

representation and hash functions, whereas the second stage will always be adaptive.

Say Up-query budget (i.e., number of adversarial stream elements) is fixed to 𝑞𝑈 , and for

the moment assume that the other query budgets are infinite. Let some 𝑞′
𝑈
≤ 𝑞𝑈 of the Up-queries

be used in the first stage of the attack. The number 𝑞′
𝑈

is a random variable, call it 𝑄, with

distribution determined by the randomness of the structure and coins of the attacker. So, E [Err]
2Concretely, when 𝑘 = 5, 𝑚 = 1000 we have E[𝐿1] ≈ 2283. Experimentally, we verified this result over 10, 000

trials with an average of 2281 insertions needed to find a cover set for a per-trial randomly chosen element 𝑥.

42

may depend on the value of 𝑄, and then we calculate the expectation as E[E[Err |𝑄]]. After a

cover C is found by the first stage (so Cover1
𝑥 holds), the second stage can insert C until the

resource budget is exhausted. Note that each insertion of C will increase the CMS

estimation-error by one. Our attacks ensure that |C| ≤ 𝑘 , and so the number of C-insertions in the

second stage is at least
⌊
𝑞𝑈−𝑄
𝑘

⌋
. This implies that

E [Err |𝑄] ≥ ∑⌊(𝑞𝑈−𝑄)/𝑘⌋
𝜉=1 Pr

[
Err ≥ 𝜉 |𝑄,Cover1

𝑥

]
Pr

[
Cover1

𝑥 |𝑄
]

Letting 0 ≤ 𝑇 ≤ 𝑞𝑈 be the

maximum number of Up-queries allowed in the first stage (i.e. 𝑄 ≤ 𝑇), we have

E [Err] ≥
𝑇∑︁

𝑞′
𝑈
=0

⌊
𝑞𝑈−𝑞′𝑈
𝑘

⌋
Pr

[
Cover1

𝑥 |𝑄=𝑞′𝑈
]

Pr
[
𝑄=𝑞′𝑈

]
.

3.4.2.1 Public hash and representation setting

The public hash setting allows to find a cover using the Hash oracle only (i.e., 𝑄=0). This

step introduces no error; E [Err] =
⌊
𝑞𝑈
𝑘

⌋
Pr

[
Cover1

𝑥 |𝑄=0
]
. Given our definition of 𝐿1 as the

minimal number of 𝑅(𝐾, ·) evaluations to find a cover, the cover-finding step of the attack requires

𝑘 (1+𝐿1) Hash-queries: 𝑘 to evaluate 𝑅(𝐾, 𝑥), and then 𝑘𝐿1 to find a cover. Say 𝑞𝐻 is the

Hash-oracle budget for the attack. A cover is then found iff 𝐿1≤ 𝑞𝐻−𝑘
𝑘

. Assuming 𝑞𝑈 > 𝑘 (so that

a found cover is inserted at least once) and using (3-2) we arrive at

Pr
[
Cover1

𝑥 |𝑄=0
]
=

(
1− (1−1/𝑚)

𝑞𝐻
𝑘
−1

) 𝑘
(3-4)

implying E[Err] ≥
⌊
𝑞𝑈
𝑘

⌋ (
1 − (1 − 1/𝑚)

𝑞𝐻
𝑘
−1

) 𝑘
. For 𝑞𝐻/𝑘 ≫ 1, which is likely as 𝑞𝐻 is offline

work and practical 𝑘 are small, E[Err] ≈ 𝑞𝑈/𝑘 . The full attack can be found in Figure 3-4.

3.4.2.2 Private hash and private representation setting

This is the most challenging setting to find a cover: the privacy of hash functions effectively

makes local hashing useless, and the private representation prevents the adversary from learning

anything about the result of online hash computations.

43

CoverAttackHash,Up,Qry (𝑥, 𝐾, repr)

1 : cover←FindCoverHash (1, 𝑥, 𝐾)
2 : until 𝑞𝑈 Up-queries made:
3 : for 𝑒 ∈ cover: Up(𝑒)
4 : return done

FindCoverHash (𝑟, 𝑥, 𝐾)

1 : cover← ∅; found← False
2 : I ← ∅; tracker← zeros(𝑘)
3 : // 𝑅 (𝐾, 𝑥) [𝑖] = Hash (⟨𝑖, 𝐾, 𝑥⟩)

4 : (𝑝1, 𝑝2, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥)
5 : while not found
6 : if 𝑞𝐻 Hash-queries made
7 : return ∅
8 : 𝑦 ←←U \ (I ∪ {𝑥})
9 : I ← I ∪ {𝑦}

10 : (𝑞1, 𝑞2, . . . , 𝑞𝑘) ← 𝑅(𝐾, 𝑦)
11 : for 𝑖 ∈ [𝑘]
12 : if 𝑝𝑖 = 𝑞𝑖 and tracker[𝑖] < 𝑟
13 : cover← cover ∪ {𝑦}
14 : tracker[𝑖] + = 1
15 : if sum(tracker) = 𝑟𝑘
16 : found← True
17 : return cover

Figure 3-4. Cover Set Attack for the CMS in public hash function setting. We use 𝑅(𝐾, 𝑥) to mean
(Hash(⟨1, 𝐾, 𝑥⟩),Hash(⟨2, 𝐾, 𝑥⟩, . . . ,Hash(⟨𝑘, 𝐾, 𝑥⟩))). The attack is parametrized with the
update and Hash query budget 𝑞𝑈 and 𝑞𝐻 .

In Figure 3-5 we give an attack for the private hash and private representation setting. This

is the most challenging setting for finding a cover set: the privacy of the hash functions makes

local hash computations effectively useless, and the privacy of the representation prevents the

adversary from using it to view the result of online hash computations. The attack begins by

querying 𝑥 to learn its current frequency estimate; let (𝑝1, 𝑝2, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥) and let

𝑀 [1] [𝑝1] = 𝑐1, . . . , 𝑀 [𝑘] [𝑝𝑘] = 𝑐𝑘 be the values of the counters associated to 𝑥 at this time, i.e.,

min𝑖∈[𝑘]{𝑐𝑖} = 𝑎 ≥ 0.

The attack then inserts distinct random elements that are not equal to 𝑥, checking the

estimated frequency after each insertion until the estimated frequency for 𝑥 increases to 𝑎 + 1, as

this signals that a cover set for 𝑥 has been inserted. Let ®𝐼 be the stream of inserted elements at the

moment that this happens. At this point, we begin the first “round” of extracting from ®𝐼 a 1-cover.

44

Say the last inserted element was 𝑧1. As this caused the CMS estimate to increase, 𝑧1 must share

at least one counter with 𝑥. Moreover, any counter covered by 𝑧1 must have been minimal, i.e.,

still holding its initial value 𝑐𝑖, at the time that 𝑧1 was inserted. Thus, we set our round-one

candidate cover set C1 ← {𝑧1}. Notice that by definition, the insertion of 𝑧1 increases the

estimation error by one.

LetM(C1) = {𝑖 ∈ [𝑘] | ∃𝑧 ∈ C : 𝑅(𝐾, 𝑧) [𝑖] = 𝑝𝑖}, i.e., the set of rows whose 𝑥-counters are

covered by C1, and let 𝛿1 = min 𝑗∉M(C1){𝑀 [𝑗] [𝑝 𝑗]} −min𝑖∈M(C1){𝑀 [𝑖] [𝑝𝑖]}. Notice that 𝛿1 is

the gap between the smallest counter(s) not covered by C1, and the smallest counter(s) that are

covered by C1. (Observe that 𝑧1 may also cover non-minimal 𝑥-counters.) Thus, if we now

reinsert C1 a total of 𝛿1 times, this gap shrinks to zero; reinserting it once more will cause some

𝑥-counter that is not covered by C1 to become minimal, and we can observe this by making an

estimation query (i.e. a Qry call) after each reinsertion.

noindent Example: Say we have 𝑘 = 4, and prior to the first insertion of 𝑧1 (as part of ®𝐼) we

have 𝑀 [1] [𝑝1] = 2, 𝑀 [2] [𝑝2] = 3, 𝑀 [3] [𝑝3] = 5 and 𝑀 [4] [𝑝4] = 0. Now, say that 𝑧1 covers

the 𝑥-counters in rows 1,4: then upon first inserting 𝑧1, we have 𝑀 [1] [𝑝1] = 3, 𝑀 [2] [𝑝2] = 3,

𝑀 [3] [𝑝3] = 5 and 𝑀 [4] [𝑝4] = 1. We create C1 = {𝑧1}, and compute 𝛿1 = 3 − 1 = 2. If we were

to insert C1 twice more, we would have 𝑀 [1] [𝑝1] = 5, 𝑀 [2] [𝑝2] = 3, 𝑀 [3] [𝑝3] = 5 and

𝑀 [4] [𝑝4] = 3; if we had checked the CMS estimate for 𝑛𝑥 after each insertion, we would have

observed responses 2 and 3. After 𝛿1 + 1 = 3 re-insertions of C1, we would have 𝑀 [1] [𝑝1] = 6,

𝑀 [2] [𝑝2] = 3, 𝑀 [3] [𝑝3] = 5, 𝑀 [4] [𝑝4] = 4, and the CMS estimate of 𝑛𝑥 would remain 3

because now 𝑀 [2] [𝑝2] is minimal. ◦

Notice that the 𝛿1 + 1 re-insertions of C1 will increase the CMS estimate of 𝑛𝑥 by exactly 𝛿1.

At this point we begin round 2, searching for 𝑧2 ∈ ®𝐼 \ C1 that covers the newly minimal 𝑥-counters.

Recall that the elements of ®𝐼 are distinct (by design), so if we reinsert ®𝐼 \ C1 in order we are

guaranteed to hit some satisfying 𝑧2 ≠ 𝑧1, and this can be observed by checking the CMS estimate

of 𝑛𝑥 after each element is reinserted. As was the case for 𝑧1, we know that 𝑧2 covers the currently

minimal 𝑥-counters, and that prior to reinserting 𝑧2 these counters had not changed in value since

45

the end of round 1. Thus, reinserting 𝑧2 increases the estimation error by one. We set

C2 ← C1 ∪ {𝑧2}, and then switch to reinserting C2 a total of 𝛿2 + 1 times (where 𝛿2 is defined

analogously to 𝛿1) to end round 2. Again, this increases the estimation error by 𝛿2.

Continuing this way, after some ℓ ≤ 𝑘 rounds we will have found a complete 1-cover for 𝑥.

There can be at most 𝑘 rounds, because each round 𝑖 adds exactly one new element 𝑧𝑖 to the

incomplete cover C𝑖−1, and there are only 𝑘 counters to cover. Notice that in round ℓ, when we

reinsert Cℓ we will never observe that some new 𝑥-counter has become minimal: all 𝑥-counters are

covered by Cℓ, so all will be increased by each reinsertion. Nonetheless, each reinsertion of Cℓ

adds one to the estimation error, and these re-insertions may continue until the resource budget is

exhausted, i.e., until a total of 𝑞𝑈 elements have been inserted (via Up) as part of the attack.

The number of Up-queries (i.e. insertions) required to reach the complete cover Cℓ is

𝑞′𝑈 ≤ ℓ | ®𝐼 | +
ℓ−1∑︁
𝑖=1
(𝛿𝑖 + 1) (𝑖) = ℓ | ®𝐼 | + ℓ(ℓ − 1)

2
+
ℓ−1∑︁
𝑖=1
𝑖𝛿𝑖

and so Cℓ can potentially be reinserted at least ⌊(𝑞𝑈 − 𝑞′𝑈)/ℓ⌋ times, each time adding one to the

estimation error. We say potentially because the Qry-query budget may be the limiting factor;

we’ll return to this in a moment. For now, assuming 𝑞𝑄 is not the limiting factor, the error

introduced by the attack is

Err ≥
⌊(
ℓ +

ℓ−1∑︁
𝑖=1

𝛿𝑖

)
+

(
𝑞𝑈 − ℓ | ®𝐼 | − ℓ(ℓ−1)

2 −∑ℓ−1
𝑖=1 𝑖𝛿𝑖

ℓ

)⌋
=

⌊(
ℓ + 1

2
+ 1
ℓ

(
𝑞𝑈 +

ℓ−1∑︁
𝑖=1
(ℓ − 𝑖)𝛿𝑖

)
− 𝐿1

)⌋

where the final line holds because | ®𝐼 | is, by construction, precisely 𝐿1. We note that Err is a

function of several random variables: 𝐿1, ℓ, {𝛿𝑖}𝑖∈[ℓ−1] .

We would like to develop an expression for E[Err], so we observe that for practical values

of 𝑘, 𝑚 (e.g., 𝑘 = 4, with 𝑚 ≫ 𝑘) it is likely that ℓ = 𝑘 . We have ℓ < 𝑘 only if one or more of the

covering elements cover multiple 𝑥-counters, and for small 𝑘 ≪ 𝑚 this is unlikely. We

46

approximate Err with Êrr by replacing ℓ with 𝑘 , dropping the flooring operation, arriving at

E[Err] ≈ E[Êrr] ≈
(
𝑘 + 1

2
+ 1
𝑘

(
𝑞𝑈 +

𝑘−1∑︁
𝑖=1
(𝑘 − 𝑖)E[𝛿𝑖]

)
− E[𝐿1]

)

Rearranging and using the very tight approximation E[𝐿1] ≈ 𝑚𝐻𝑘 , we have

E[Êrr] ≈
(𝑞𝑈
𝑘
− 𝑚𝐻𝑘

)
+ 𝑘 + 1

2
+

(
1
𝑘

𝑘−1∑︁
𝑖=1
(𝑘 − 𝑖)E[𝛿𝑖]

)
We do not have a crisp way to describe the distribution of the 𝛿𝑖 random variables, but we can

make some educated statements about them. The expected value of any counter 𝑀 [𝑖] [𝑗] after ®𝐼

has been inserted is | ®𝐼 |/𝑚 ≈ 𝑚𝐻𝑘/𝑚 = 𝐻𝑘 , and 𝐻𝑘 < 4 for 𝑘 ≤ 30 (and practical values of 𝑘 are

typically much less than 30); moverover, standard balls-and-bins arguments tell us that as the

number of balls approaches 𝑚 ln𝑚, the maximum counter value in any row approaches the

expected value. Since 𝛿1 ≤ max 𝑗∉M({𝑧1}){𝑀 [𝑗] [𝑝 𝑗]} −min𝑖∈M({𝑧1}){𝑀 [𝑖] [𝑝𝑖]}, we can safely

assume that E [𝛿1] is upper-bounded by a constant that is small relative to 𝑚, 𝑞𝑈/𝑘 .

After inserting C1= {𝑧1} a total of 𝛿1 + 1 times, we switch to reinserting ®𝐼 \ C1 until we find a

𝑧2 that covers the currently minimal 𝑥-counters. When we begin to reinsert C2, we know by

construction that 𝛿2 ≤ min 𝑗∉M({𝑧1,𝑧2}){𝑀 [𝑗] [𝑝 𝑗]} −
(
min 𝑗∉M({𝑧1}){𝑀 [𝑗] [𝑝 𝑗]} + 1

)
. For the first

term in the difference, we “roll back” one round; say that 𝛼 = max 𝑗∉M({𝑧1}){𝑀 [𝑗] [𝑝 𝑗]}. Then,

being very pessimistic, we know that min 𝑗∉M({𝑧1,𝑧2}){𝑀 [𝑗] [𝑝 𝑗]} ≤ 2𝛼 + (𝛿1 + 1): in finding 𝑧2,

we reinsert at most all of ®𝐼 \ {𝑧1}, which would add another (at most) 𝛼 to that maximum counter

value, and the repeated insertions of C1 could have added at most 𝛿1 + 1 to said maximum counter.

However, the second term in the difference is at least 𝛿1 + 1, so 𝛿2 ≤ 2𝛼 and we have already

argued that 𝛼 is in the neighborhood of 𝐻𝑘 < 4. Continuing this this way, we reach the conclusion

that the dominant term in E[Êrr] ≈ E[Err] will be 𝑞𝑈
𝑘
− 𝑚𝐻𝑘 . This is observed experimentally in

Table 3-2. For realistic values of 𝑘 , significant error will be created when 𝑞𝑈 ≫ (𝑚𝑘)𝐻𝑘 . For

example, when 𝑘 = 4, 𝑚 = 2048 we require 𝑞𝑈 ≫ 17067; this is likely not a real restriction in most

practical use-cases of CMS, e.g., computing the heavy hitter flows traversing a router.

47

Returning to the matter of exhausting the Qry-budget, the total number of Qry-queries for

the attack depends somewhat heavily on whether or not ℓ = 𝑘 . If ℓ = 𝑘 then |C𝑘 | = 𝑘 , and we

know that a complete cover has been found. Thus, we do not need to make any Qry-queries

during reinsertions of C𝑘 . If ℓ < 𝑘 , however, then we must make Qry-queries during reinsertions

of Cℓ, because we do not know that Cℓ contains a complete cover.

Either way, the number of Qry-queries need to reach Cℓ is 𝑞′
𝑄
≤ 1 + ℓ | ®𝐼 | +∑ℓ−1

𝑖=1 (𝛿𝑖 + 1), and

the expected gap between 𝑞′
𝑈

and 𝑞′
𝑄

is

E[𝑞′𝑈 − 𝑞′𝑄] ≈ E

[
ℓ−1∑︁
𝑖=1
𝑖(𝛿𝑖 + 1) −

ℓ−1∑︁
𝑖=1
(𝛿𝑖 + 1)

]
≤ E

[
ℓ−1∑︁
𝑖=1

𝛿𝑖

]
+ (𝑘 − 1) (𝑘 − 2)

2

≤ 𝑘E
[

max
𝑖∈[ℓ−1]

{𝛿𝑖}
]
+ (𝑘 − 1) (𝑘 − 2)

2

By the arguments just given about the 𝛿𝑖, we can safely bound E
[
max𝑖∈[ℓ−1]{𝛿𝑖}

]
by 𝑘𝐻𝑘 . So

E[𝑞′
𝑈
− 𝑞′

𝑄
] = 𝑂 (𝑘2) with a small hidden constant. Thus, the expected numbers of Up-queries and

Qry-queries expended to find the complete cover Cℓ are similar, especially for realistic values of 𝑘 .

Now, in the most likely case that ℓ = 𝑘 , no further Qry-queries are needed. Hence, when

ℓ = 𝑘 , the overall error induced by the attack will be determined by the insertion/Up-budget (𝑞𝑈)

when the total Qry-budget 𝑞𝑄 is approximately the insertion-budget required for finding the

cover. When ℓ < 𝑘 , in order for the overall error to be determined by the insertion budget, the total

Qry-budget needs to accommodate 𝑞′
𝑄
+ (𝑞𝑈 − 𝑞′𝑈)/ℓ queries. The second summation comes

from the fact that while accumulating error via re-insertions of Cℓ, we must make one Qry-query

per reinsertion. This is a potentially large jump in the number of estimation queries required, from

ℓ = 𝑘 to ℓ < 𝑘 . But in reality the jump might be less important than it appears: if ℓ < 𝑘 then

given our intuition about the 𝛿𝑖, it seems likely that if some C𝑖 is taking a large number of

insertions, one can likely assume that C𝑖 is a complete cover, cease making estimation queries and

switch to an insertion only strategy.

48

3.4.2.3 Public hash and private representation setting

Observe that the public representation is never used in our attack in the public hash and

public representation setting. Therefore, in this public hash and private representation setting, the

same attack can be used. The same analysis applies.

3.4.2.4 Private hash and public representation setting

The public representation allows for an attack similar to our attack in the public hash

settings (Figure 3-6). Here, we use the Up-oracle instead of the Hash-oracle to find a cover. By

comparing the state before and after adding an element it is easy to deduce the element’s counters

(as they are the only ones to change). Our attack first adds the target to get its counters. Then, we

keep inserting distinct elements, comparing the state before and after until a cover C is found. By

the definition of 𝐿1, the cover is found with (𝑞′
𝑈
= 1 + 𝐿1) Up-queries, and is after reinserted

⌊(𝑞𝑈 − 𝑞′𝑈)/|C|⌋ times, each time adding one to the estimation error. Hence,

Err ≥ ⌊(𝑞𝑈 − 1 − 𝐿1)/|C|⌋ ≥ ⌊(𝑞𝑈 − 1 − 𝐿1)/𝑘⌋ and E[Err] ≥ 𝑞𝑈−1−E[𝐿1]
𝑘

≈ 𝑞𝑈−𝑚𝐻𝑘
𝑘

.

3.4.3 Cover-Set Attacks on HK

By examining the HK pseudocode, it is not hard to see that when a stream ®𝑆 satisfying the

NFC condition is inserted in the HK structure, over-estimations are not possible; any error in

frequency estimates is due to underestimation. We also note that if ®𝑆 satisfies the NFC condition,

then any cover that it contains for 𝑥 ∈ U must be a (F P𝑥 , 𝑥, 𝑟)-cover. In attacking HK, we will

build (F P𝑥 , 𝑥, 1)-covers; as such, in this section we will often just say “cover” as shorthand.

The intuition for our HK-attacks is, loosely, as follows. If one repeatedly inserts a cover

for 𝑥, before 𝑥 is inserted, then the counters associated to 𝑥 will be owned by members of the

cover, and the counter values can be made large enough to prevent any subsequent appearances

of 𝑥 from decrementing these counters with overwhelming probability. We will sometimes say

that such hard-to-decrement counters are “locked-down”. As such, the HK estimate 𝑛̂𝑥 will be

zero, even if 𝑛𝑥 ≫ 0.

We note that attacks of this nature would be particularly damaging in instances where the

underlying application uses HK to identify the most frequent elements in a stream ®𝑆. With

49

relatively few insertions of the cover set, one would be able to hide many occurrences of 𝑥. DDoS

detection systems, for example, rely on compact frequency estimators to identify communication

end-points that are subject to an abnormally large number of incoming connections [51]. In this

case, the target 𝑥 is an end-point identifier (e.g., an IP address and/or TCP port). Being able to

hide the fact that the end-point 𝑥 is a “heavy hitter” in the stream of incoming flow destinations

could result in 𝑥 being DDoSed.

Interestingly, while a cover is necessary to cause a frequency estimation error for 𝑥, it is not

sufficient. Unlike the CMS, whose counters are agnostic of the order of elements in the stream,

the HK counters have a strong dependence on order. Thus, if 𝑥 is a frequent element and many of

its appearances are at the beginning of the stream, then it can lock-down its counters; a cover set

attack is still possible, but now the number of times the cover must be inserted may be much larger

than the frequency (so far) of 𝑥.

3.4.3.1 Setting the attack parameter t

Say our attack’s resource budget is (𝑞𝐻 , 𝑞𝑈 , 𝑞𝑄). The HK attacks find a cover

C = {𝑧1, 𝑧2 . . . } and then inserts it 𝑡 times. We set the value 𝑡 such the probability 𝑝 of

decrementing the any of the target’s counters with subsequent insertions of 𝑥 is sufficiently small.

For our experiments we set 𝑝 = 2−128.

Let 𝐷𝑡
𝑖

be the event that at the end of the attack 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥 given that at some point

during the attack we had 𝐴[𝑖] [𝑝𝑖] .cnt = 𝑡 with 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑧𝑖 , 𝑧𝑖 ≠ 𝑥. Let
(
𝐷𝑡

)
=

∨
𝑖=1 𝐷

𝑡
𝑖
.

Then,

Pr[𝐷𝑡
𝑖
]≤

(𝑞𝑈
𝑡

) ∏𝑡
𝑗=1 𝑑

𝑗 ≤ (𝑞𝑈)𝑡 𝑑
𝑡 (𝑡+1)

2 .

Say 𝑓 (𝑡) = 𝑘 (𝑞𝑈)𝑡 𝑑
𝑡 (𝑡+1)

2 . If the attack set 𝐴[𝑖] [𝑝𝑖] .cnt = 𝑡 with 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑧𝑖 , 𝑧𝑖 ≠ 𝑥

for each 𝑖, then the probability of 𝑥 overtaking any of its counters by the end of the attack is

bounded by Pr[∨𝑘
𝑖=1 𝐷

𝑡
𝑖
] ≤ 𝑓 (𝑡).

3.4.3.2 Public hash and public representation setting

This attack (Figure 3-7) is similar to the CMS attack for the public hash setting, but with a

few tweaks. The cover is inserted only 𝑡 times and then the Up budget is exhausted by inserting

50

target 𝑥 (at least (𝑞𝑈 − 𝑡𝑘) times) to accumulate error. If ¬𝐷𝑡 then this process introduces the

error of at least (𝑞𝑈 − 𝑡𝑘). Thus, as the cover finding step uses Hash only and induces no error,

E [Err] ≥ (𝑞𝑈 − 𝑡𝑘) (1 − 𝑝) Pr
[
Cover1

𝑥 | 𝑄 = 0
]
.

For the term Pr
[
Cover1

𝑥 | 𝑄 = 0
]

we can simply apply the same bound as for the CMS attack

(Equation (3-4)) obtaining

E [Err] ≥ (𝑞𝑈 − 𝑡𝑘) (1 − 𝑝)
(
1 − (1 − 1/𝑚)

𝑞𝐻
𝑘
−1

) 𝑘
.

3.4.3.3 Private hash and private representation setting

We present the attack for this setting in Figure 3-8. The attack starts by inserting 𝑥 once.

Starting with an empty HK implies that then 𝑥 owns all of its buckets, i.e., 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥 for

all rows 𝑖, with their associated counters 𝑐1, . . . , 𝑐𝑘 set to one, setting 𝑥’s current frequency

estimate 𝑎 = max𝑖∈[𝑘] {𝑐𝑖} = 1. The attack then keeps inserting distinct elements until the

frequency estimate for 𝑥 drops to 0, i.e, 𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑥 for all rows 𝑖.

Let I1 be the set of inserted elements ≠ 𝑥 at the moment that this happens, and the last

inserted element was 𝑧1. Then, 𝑧1 must share at least one counter with 𝑥 (the one that changed

𝐴[𝑖] [𝑝𝑖] .fp from fp𝑥 most recently). So, we set our round-one candidate cover set C1 ← {𝑧1} and

insert 𝑡 times to the HK. Now we are at the point when all 𝑐1, . . . , 𝑐𝑘 are owned by elements ≠ 𝑥,

and, under the NFC condition, all but one are of value one. Note that inserting I1 increased the

estimate error by one.

The adaptive portion of our attack proceeds as follows. In each round 𝑖 = 2, . . . we first keep

reinserting 𝑥 until HK(𝑥) reaches 1. Let 𝑑𝑖 be the number of these reinsertions. Hence, these

reinsertions increased the estimate error by 𝑑𝑖 − 1. At this point, at least one counter 𝑐1, . . . , 𝑐𝑘 is

owned by 𝑥 and all counters owned by 𝑥 are set to 1. Then, we search for a new element to create

our round-𝑖 cover set candidate C𝑖, by inserting new distinct elements, until we find a 𝑧𝑖 that drops

HK(𝑥) to 0. We set C𝑖 ← C𝑖−1 ∪ {𝑧𝑖} and insert 𝑧𝑖 𝑡 times. At this point, all counters 𝑐1, . . . , 𝑐𝑘

51

are owned by elements ≠ 𝑥 again, and all are of value one, but the ones covered by C𝑖 which (very

likely) hold a value strictly greater than 1 and (very) close to 𝑡.

The procedure ensures that after some ℓ ≤ 𝑘 rounds we have found a complete 1-cover with

(very) high probability. Each round 𝑖 adds maximally one new element to the incomplete cover

C𝑖−1. The added element covers whatever 𝑥 is owning at the beginning of the round. Thus, with

(very) high probability, counters owned by 𝑥 in the round are not covered by C𝑖−1. This is because

all the counters covered by C𝑖−1 were set to value 𝑡 (or a value close to 𝑡 with very high

probability3) at some point, and the selection of 𝑡 makes the probability of later overtaking one

such counter (very) small. There are only 𝑘 counters to cover and so with (very high) probability

having only 𝑘 rounds suffices to find a cover.

Let I𝑖 be the set of inserted elements ≠ 𝑥 in each round. We get the number of Up-queries

required to complete 𝑘 rounds is

𝑞′𝑈 ≤
𝑘∑︁
𝑖=1
(𝑑𝑖 + |I𝑖 | + 𝑡) =

𝑘∑︁
𝑖=1
(𝑑𝑖 + |I𝑖 |) + 𝑡𝑘 . (3-5)

So, 𝑥 can be potentially inserted 𝑞𝑈 − 𝑞′𝑈 times, accumulating some additional error4. Let us

assume that 𝑞𝑄 is not the limiting resource in the attack. Say C is the attack’s maximal round

candidate cover. Whenever ¬
(
𝐷𝑡

)
, adding 𝑧𝑖 𝑡 times to the HK incremented one of the 𝑥’s

counters, not yet set to value 𝑡 by elements in C𝑖−1. If, in addition, we have |C| = 𝑘 , 𝑘 different

elements set 𝑘 different counters of 𝑥 (i.e. all of 𝑥’s counters) to 𝑡 making them impossible to

decrement later. Therefore, after the rounds to reach C are completed every further insertion of 𝑥

(𝑞𝑈 − 𝑞′𝑈 of them) increased the error by 1. Note that |C| = 𝑘 implies the attack completed exactly

3We could have 𝑧𝑖 simultaneously covering more not yet covered counters. Then, adding 𝑧𝑖 𝑡 times fixes one
counter to 𝑡, and the others to 𝑡 with the probability ≥ 0.9 – the other counters might have been owned by some others
elements but are definitely of value one, so each of them gets “taken” by 𝑧𝑖 in the first insertion with probability 0.9.

4We say potentially as the Qry-query budget might be a limiting factor.

52

𝑘 rounds and

[
Err | ¬

(
𝐷𝑡

)
, |C| = 𝑘

]
≥

𝑘∑︁
𝑖=1
(𝑑𝑖) + 𝑞𝑈 −

𝑘∑︁
𝑖=1

(
𝑑𝑖 +

[
|I𝑖 | | ¬

(
𝐷𝑡

)
, |C| = 𝑘

])
− 𝑡𝑘

≥ 𝑞𝑈 −
𝑘∑︁
𝑖=1

[
|I𝑖 | | ¬

(
𝐷𝑡

)
, |C| = 𝑘

]
− 𝑡𝑘 .

Let 𝐷𝑖 be the set of rows 𝑗 with 𝐴[𝑗] [𝑝 𝑗] .fp = fp𝑥 (i.e. 𝑥 owning the counter), and let 𝑐𝑖, 𝑗

be the values of 𝐴[𝑗] [𝑝 𝑗] .cnt after the 𝑖-th round reinsertion step. Say 𝑌𝑖, 𝑗 counts the minimal

number of distinct element insertions to “overtake” the counter from 𝑥 in row 𝑗 ∈ 𝐷𝑖 after the 𝑖-th

round reinsertion step, i.e., the minimal number of distinct evaluations of 𝑅(𝐾.·) to set

𝐴[𝑗] [𝑝 𝑗] .fp ≠ fp𝑥 . Then, 𝑌𝑖, 𝑗 is a geometric random variable with 𝑝 = 𝑑
𝑐𝑖, 𝑗

𝑚
, 𝑑𝑐𝑖, 𝑗 coming from the

probabilistic decay mechanism. Moreover, 𝑐𝑖, 𝑗 = 1 for all 𝑗 ∈ 𝐷𝑖 – that is counters owned by 𝑥

equal 1 after every reinsertion step. As |𝐷1 | = 𝑘 we have that |I1 | = max 𝑗∈𝐷1

{
𝑌1, 𝑗

}
is essentially

𝐿1 with 𝑝 = 𝑑
𝑚

. Since |𝐷𝑖 | ≤ 𝑘 and all 𝑌𝑖, 𝑗 are positive and i.i.d. geometric variables with 𝑝 = 𝑑
𝑚

,

we have that E [|I𝑖 |] ≤ E [|I1 |]. So, E [|I𝑖 |] ≤ 𝑚
𝑑
𝐻𝑘 . This implies that

E [Err] =
𝑘∑︁
𝑠=0

E
[
Err |

(
𝐷𝑡

)
, |C| = 𝑠

]
Pr

[(
𝐷𝑡

)
∧ |C| = 𝑠

]
+

𝑘∑︁
𝑠=0

E
[
Err | ¬

(
𝐷𝑡

)
, |C| = 𝑠

]
Pr

[
¬

(
𝐷𝑡

)
∧ |C| = 𝑠

]
≥ E

[
Err | ¬

(
𝐷𝑡

)
, |C| = 𝑘

]
Pr

[
¬

(
𝐷𝑡

)
∧ |C| = 𝑘

]
≥ (𝑞𝑈−𝑡𝑘) Pr

[
¬

(
𝐷𝑡

)
∧ |C| = 𝑘

]
−

𝑘∑︁
𝑖=1

E [|I𝑖 |]

≥ (𝑞𝑈−𝑡𝑘) Pr
[
¬

(
𝐷𝑡

)
∧ |C| = 𝑘

]
− 𝑘𝑚

𝑑
𝐻𝑘 .

53

We expect Pr
[
¬

(
𝐷𝑡

)
∧ |C| = 𝑘

]
≈ 1 and E [Err] ≈ 𝑞𝑈−𝑡𝑘− 𝑘𝑚𝑑 𝐻𝑘 . We confirmed this

experimentally as seen in Table 3-2.

3.4.3.4 Public hash and private representation setting

As with the CMS, the same attack and analysis applies from the public hash and public

representation setting.

3.4.3.5 Private hash and public representation setting

The public representation allows us to design an attack similar to the attack for the public

hash settings, but, as with the CMS attack in the setting, we need to find the cover using the Up

oracle. Starting with an empty filter, the attack first inserts 𝑥, such that 𝑥 is guaranteed to own all

of its counters. Then, we keep adding distinct elements, until all the 𝐴[𝑖] [𝑝𝑖] .fp that once

belonged to 𝑥 has changed, in turn signaling the cover for 𝑥 has been found. We give a pseudocode

description of this attack in Figure 3-9.

Adding any 𝑦 ≠ 𝑥 has 𝑑
𝑚

probability to change 𝐴[𝑖] [𝑝𝑖] .fp after the single initial insertion

of 𝑥. Let 𝑌𝑖 be the minimal number of distinct element ≠ 𝑥 insertions before 𝐴[𝑖] [𝑝𝑖] .fp changes

from fp𝑥 . We observe that 𝑌𝑖 is a geometric random variable with success probability 𝑝 = 𝑑
𝑚

. Set

𝑌 = max𝑖∈[𝑘]{𝑌𝑖}. So, our cover-finding step requires (𝑞′
𝑈
= 1 + 𝑌) Up-queries to complete - 1

query to insert 𝑥, and then 𝑌 to find a cover. Say 𝑞𝑈 is the total Up-query budget. After the cover

finding step, we insert cover C 𝑡 times, to lock-down the counters followed by 𝑞𝑈 − 𝑞′𝑈 − 𝑡 |C|

insertions of 𝑥. Each 𝑥-insertion added one to the error if ¬
(
𝐷𝑡

)
and

E[Err] ≥ E
[
Err | ¬

(
𝐷𝑡

)]
Pr

[
¬

(
𝐷𝑡

)]
≥ (𝑞𝑈 − 1 − E [𝑌] − 𝑡𝑘) Pr

[
¬

(
𝐷𝑡

)]
≈ 𝑞𝑈 −

𝑚

𝑑
𝐻𝑘 − 𝑡𝑘 .

The last approximation comes from assuming 𝑡 is set such that Pr
[
¬

(
𝐷𝑡

)]
≈ 1, and observing

that 𝑌 is essentially 𝐿1 with 𝑝 = 𝑑
𝑚

(i.e. 𝑚 replaced with 𝑚
𝑑

).

54

3.5 Count-Keeper

In Figure 3-10 we present the Count-Keeper (CK) data structure. At a high level, CK uses

information from both CMS and HK (with 𝑑 = 1) to create frequency estimates that are more

accurate than either CMS or HK (alone) when the stream is “honest”, and that are more robust in

the presence of adversarial streams. After describing the structure, we will provide analytical

support for its design, i.e., why it is more accurate and robust. To summarize this very briefly and

informally: CK is more accurate because its HK component can decrease the effect of “collision

noise” that drives up the values held at the relevant 𝑀 [𝑖] [𝑝𝑖] in the CMS component; and it is

more robust because a 1-cover no longer suffices to create estimation errors (minimally, a 2-cover

is needed) and, unlike either CMS or HK alone, CK can detect when the state of 𝑀, 𝐴 is

“abnormal” and prone to producing spurious estimates.

3.5.1 Structure

At initialization, the CK initializes a standard CMS (initialized in the structure as 𝑀) and a

HK with the decay parameter 𝑑 = 1 (initialized in the structure as 𝐴) in their usual way. We set the

substructures to be of the same number of rows and buckets and let the elements hash to the same

counters’ positions in each substructure using the same row hash functions.

To insert a stream element 𝑥 arrives, we run the CMS and HK update procedures

𝑀 ← UpCMS
𝐾
(𝑀, up𝑥) and 𝐴← UpHK

𝐾 (𝑀, up𝑥), respectively. We note that the same positions

(𝑝1, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥) are visited in both procedures; thus the same elements are observed by

𝑀 [𝑖] [𝑝𝑖] and 𝐴[𝑖] [𝑝𝑖]. By “observed”, we mean that both 𝑀 [𝑖] [𝑝𝑖] and 𝐴[𝑖] [𝑝𝑖] maintain

summary information about the same substream, namely the substream of elements 𝑧 such that

𝑝𝑖 = 𝑅(𝐾, 𝑧) [𝑖].

When queried for the frequency estimate of an element 𝑥 ∈ U, CK first computes the CMS

and HK estimates, which we will write as CMS(𝑥) and HK(𝑥) for brevity. If CMS(𝑥)=HK(𝑥), then

we return their shared response. We will see precisely why this is the correct thing to do, but

loosely, it is because (under the NFC assumption) HK(𝑥) ≤ 𝑛𝑥 ≤ CMS(𝑥). If CMS(𝑥) ≠ HK(𝑥)

then CK proceeds row-by-row, using the information held at 𝐴[𝑖] [𝑝𝑖] to refine the summary

55

information held at 𝑀 [𝑖] [𝑝𝑖]. If any of the 𝐴[𝑖] [𝑝𝑖] .fp are uninitialized, then we are certain

that 𝑛𝑥 = 0; had any stream element been mapped to this position, the fingerprint would no longer

be uninitialized. In this case, CK(𝑥) returns 0.

Now assume that none of the 𝐴[𝑖] [𝑝𝑖] have uninitialized fingerprints, and

CMS(𝑥) ≠ HK(𝑥). To explain our row-by-row refinements, let us define two sets

𝐼𝑥 = {𝑖 ∈ [𝑘] | 𝐴[𝑖] [𝑝𝑖] .fp= fp𝑥} and 𝐼𝑥 = {𝑖 ∈ [𝑘] | 𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑥}, i.e., the subset of rows

in 𝑀 (and 𝐴) that are “owned” and not “owned” (resp.) by 𝑥. Observe that we can write the CMS

estimate for 𝑥 as

CMS(𝑥) = min
{
min
𝑖∈𝐼𝑥
{𝑀 [𝑖] [𝑝𝑖]} ,min

𝑖∈𝐼𝑥
{𝑀 [𝑖] [𝑝𝑖]}

}
so for each row 𝑖 ∈ [𝑘], we have two cases to consider. For each case, CK maintains an internal

estimator: when 𝑖 ∈ 𝐼𝑥 the estimator is Θ𝑖1, and when 𝑖 ∈ 𝐼𝑥 the estimator is Θ𝑖2. We will talk about

each of these, next. The upshot of this discussion is that CK defines Θ1 = min𝑖∈𝐼𝑥 {Θ
𝑖
1},

Θ2 = min𝑖∈𝐼𝑥 {Θ𝑖2}, and its return value ⌊min{Θ1,Θ2}⌋ is always at least as good as CMS(𝑥).

3.5.2 Correcting CMS and Correctness of CK

In what follows, we will assume the NFC condition. For sufficiently large fingerprints (e.g.,

𝜏-bit fingerprints where 2𝜏 is much larger than the number of distinct elements in the stream) this

is reasonable. Under this assumption, CK may only overestimate the value of 𝑛𝑥 .

3.5.2.1 Correcting 𝑀 [𝑖] [𝑝𝑖] when 𝑥 does not “own” 𝐴[𝑖] [𝑝𝑖]

By its design as a count-all structure, the value of 𝑀 [𝑖] [𝑝𝑖] = 𝑛𝑥 +
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦. When 𝑖 ∈ 𝐼𝑥 ,

we claim that 𝑛𝑥 ≤
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦. To see this, observe that if 𝑛𝑥 >

∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦 then 𝑥 would own

𝐴[𝑖] [𝑝𝑖]: we can pair up appearances of 𝑥 with appearances of elements in 𝑦 ∈ 𝑉 𝑖𝑥 , and because

no element of 𝑉 𝑖𝑥 has the same fingerprint as 𝑥, each pair (𝑥, 𝑦) effectively contributes 0 to the

value of 𝐴[𝑖] [𝑝𝑖] .cnt. So if 𝑛𝑥 >
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦, the fingerprint held at 𝐴[𝑖] [𝑝𝑖] would be fp𝑥 . Note

that if 𝑛𝑥 =
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦 and 𝑖 ∈ 𝐼𝑥 , then 𝐴[𝑖] [𝑝𝑖] .cnt = 1 and some 𝑦 ≠ 𝑥 was the last insertion.

Thus, 𝐴[𝑖] [𝑝𝑖] − 1 is a lowerbound on the difference
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦 − 𝑛𝑥 , i.e., the number of

occurrences of 𝑦 ∈ 𝑉 𝑖𝑥 that are not canceled out by an occurrence of 𝑥. Thus,

𝑛𝑥 + 𝐴[𝑖] [𝑝𝑖] − 1 ≤ ∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦, which implies that 𝑀 [𝑖] [𝑝𝑖] = 𝑛𝑥 +

∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦 ≤ 2𝑛𝑥 + 𝐴[𝑖] [𝑝𝑖] − 1.

56

Lemma 3-1. Let ®𝑆 satisfy the NFC condition, and let 𝑥 ∈ U. Then for any 𝑖 ∈ 𝐼𝑥 we have

𝑛𝑥 ≤ 𝑀 [𝑖] [𝑝𝑖]−𝐴[𝑖] [𝑝𝑖] .cnt+1
2 =Θ𝑖1. ♦

Proof of Lemma 3-1. We can think of the counter 𝐴[𝑖] [𝑝𝑖] .cnt as counting the depth of a stack of

fingerprint-labeled plates. The rules of the stack are as follows. Upon insertion of 𝑥 into the CK

structure:

1. if 𝐴[𝑖] [𝑝𝑖] .cnt = 0 then the stack is empty; then push an fp𝑥-labeled plate and set

𝐴[𝑖] [𝑝𝑖] .cnt← 1, 𝐴[𝑖] [𝑝𝑖] .fp← fp𝑥 .

2(a). if 𝐴[𝑖] [𝑝𝑖] .cnt = 𝑐 > 0 and 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥 , then push an fp𝑥-labeled plate on to the stack

and increment 𝐴[𝑖] [𝑝𝑖] .cnt← 𝑐 + 1.

2(b). if 𝐴[𝑖] [𝑝𝑖] .cnt = 𝑐 > 0 and 𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑥 , then pop the top (fp-labeled) plate and

decrement 𝐴[𝑖] [𝑝𝑖] .cnt← 𝑐 − 1. If this causes 𝐴[𝑖] [𝑝𝑖] .cnt = 0, then push an fp𝑥-labeled

plate and set 𝐴[𝑖] [𝑝𝑖] .cnt← 1, 𝐴[𝑖] [𝑝𝑖] .fp← fp𝑥 .

These stack rules are precisely the CK rules for handling insertions. Now, upon the first insertion

to CK, by rule 1 it is clear that all plates on the stack (there is only one of them) have label

𝐴[𝑖] [𝑝𝑖] .fp, and 𝐴[𝑖] [𝑝𝑖] .cnt is the number (1) of plates on the stack. Inductively, assume that

𝐴[𝑖] [𝑝𝑖] .cnt = 𝑐 > 0 and all 𝑐 of the plates on the stack have the same label 𝐴[𝑖] [𝑝𝑖] .fp. Say that

the next insertion is 𝑧 and 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑧. By rule 2(a), we push an fp𝑧-plate on to the stack and

increment 𝐴[𝑖] [𝑝𝑖] .cnt← 𝑐 + 1. In this case, by assumption, it remains the case that all plates

have the same label equal to 𝐴[𝑖] [𝑝𝑖] .fp, and there are 𝑐 + 1 of them. Alternatively, if

𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑧 then by rule 2(b) we pop the top plate and decrement 𝐴[𝑖] [𝑝𝑖] .cnt← 𝑐 − 1. At

this point, either the stack is empty and 𝐴[𝑖] [𝑝𝑖] .cnt = 0, so by 2(b) we push an fp𝑧-plate and set

𝐴[𝑖] [𝑝𝑖] .cnt← 1 and 𝐴[𝑖] [𝑝𝑖] .fp← fp𝑧; or the stack is not empty, and we take no further action.

In the first case, the stack contains a single plate labeled with 𝐴[𝑖] [𝑝𝑖] .fp and the counter is 1; in

the second, by assumption all plates on the stack are still labeled with 𝐴[𝑖] [𝑝𝑖] .fp, and

𝐴[𝑖] [𝑝𝑖] .cnt still gives the number of plates on the stack.

57

Having shown the invariant of the stack, we make the following observation. Let

𝑛̃ =
∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦. Then 𝑀 [𝑖] [𝑝𝑖] = 𝑛𝑥 + 𝑛̃. By the statement of the lemma 𝑖 ∈ 𝐼𝑥 , implying that

𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑥 . We claim that 𝐴[𝑖] [𝑝𝑖] .cnt = 𝑐 > 0 implies 𝑛̃ − 𝑛𝑥 ≥ 𝐴[𝑖] [𝑝𝑖] .cnt − 1. To see

this, note that 𝐴[𝑖] [𝑝𝑖] .cnt = 𝑐 > 0 means that there are 𝑐 plates labeled with 𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑥 on

the stack associated to 𝑐 insertions of elements in 𝑉 𝑖𝑥 with fingerprint 𝐴[𝑖] [𝑝𝑖] .fp. If there ever

were any fp𝑥-labeled plates on the stack (i.e., 𝑛𝑥 > 0), they were subsequently popped off by

insertions of elements with their fingerprints not equal to fp𝑥 . On the other hand, if an insertion of

𝑥 did not place a plate on to the stack, then it popped off a plate corresponding to an insertion of an

element in 𝑉 𝑖𝑥 . Thus, at most 𝑛̃ − 𝑛𝑥 insertions of elements in 𝑉 𝑖𝑥 have never popped off a plate of 𝑥,

or had their plate popped off by an insertion of 𝑥. For 𝑛̃− 𝑛𝑥 = 0 we have that 𝐴[𝑖] [𝑝𝑖] .cnt = 1, and

𝑛̃ − 𝑛𝑥 ≥ 𝐴[𝑖] [𝑝𝑖] .cnt − 1. Similarly, if 𝑛̃ − 𝑛𝑥 = 𝑑 > 0 then 𝑛̃ − 𝑛𝑥 ≥ 𝐴[𝑖] [𝑝𝑖] .cnt − 1 as there are

still 𝐴[𝑖] [𝑝𝑖] .cnt plates associated with insertions of elements in 𝑉 𝑖𝑥 that have never been popped

off and at least 𝐴[𝑖] [𝑝𝑖] .cnt − 1 of them correspond to insertions not popping off a plate of 𝑥.

We conclude that

𝑀 [𝑖] [𝑝𝑖] = 𝑛𝑥 + 𝑛̃ ≥ 𝑛𝑥 + (𝑛𝑥 + 𝐴[𝑖] [𝑝𝑖] .cnt − 1) = 2𝑛𝑥 + 𝐴[𝑖] [𝑝𝑖] .cnt − 1. Or, by rearranging,

𝑛𝑥 ≤
𝑀 [𝑖] [𝑝𝑖] − 𝐴[𝑖] [𝑝𝑖] .cnt + 1

2

which proves the lemma. □

As this lemma holds for every 𝑖 ∈ 𝐼𝑥 , we conclude that

𝑛𝑥 ≤ Θ1 = min𝑖∈𝐼𝑥 {Θ
𝑖
1} ≤ min𝑖∈𝐼𝑥 {𝑀 [𝑖] [𝑝𝑖]}.

3.5.2.2 Correcting 𝑀 [𝑖] [𝑝𝑖] when 𝑥 does “own” 𝐴[𝑖] [𝑝𝑖]

Now, say that row 𝑖 ∈ 𝐼𝑥 . Under the NFC condition 𝐴[𝑖] [𝑝𝑖] .cnt stores the number of

occurrences of 𝑥 that are not canceled out by occurrences of 𝑦 ∈𝑉 𝑖𝑥 . So, we must have had at least∑
𝑦∈𝑉 𝑖𝑥 𝑛𝑦 ≥ 𝑛𝑥 − 𝐴[𝑖] [𝑝𝑖] .cnt occurrences of 𝑦 ∈ 𝑉 𝑖𝑥 . This implies 𝑀 [𝑖] [𝑝𝑖] ≥ 2𝑛𝑥 − 𝐴[𝑖] [𝑝𝑖] .cnt,

and, by rearranging, 𝑛𝑥 ≤ 𝑀 [𝑖] [𝑝𝑖]+𝐴[𝑖] [𝑝𝑖] .cnt
2 .

58

Lemma 3-2. Let ®𝑆 satisfy the NFC condition, and let 𝑥 ∈ U. Then for any 𝑖 ∈ 𝐼𝑥 we have

𝑛𝑥 ≤ 𝑀 [𝑖] [𝑝𝑖]+𝐴[𝑖] [𝑝𝑖] .cnt
2 = Θ𝑖2. ♦

Proof of Lemma 3-2. We can think of the counter 𝐴[𝑖] [𝑝𝑖] .cnt as counting the depth of a stack of

fingerprint-labeled plates as for the proof of Lemma 3-1. View an insertion of 𝑥 being associated

with either an insertion of 𝑦 ∈ 𝑉 𝑖𝑥 that pops off its fp𝑥-labelled plate from the stack or an insertion

of 𝑦 ∈ 𝑉 𝑖𝑥 of the plate it pops off.

By the statement of the lemma 𝑖 ∈ 𝐼𝑥 , 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥 and under the NFC condition all

plates on the stack are of 𝑥. Out of the insertions having plates on the stack, only the bottom plate

one could have popped off a plate of 𝑦 ∈ 𝑉 𝑖𝑥 . Thus, at least 𝑛𝑥 − 𝐴[𝑖] [𝑝𝑖] .cnt insertions of 𝑥 are

associated with an (unique) insertion of 𝑦 ∈ 𝑉 𝑖𝑥 and

𝑛̃ ≥ 𝑛𝑥 − 𝐴[𝑖] [𝑝𝑖] .cnt.

From 𝑀 [𝑖] [𝑝𝑖] = 𝑛𝑥 + 𝑛̃ we thus obtain 𝑀 [𝑖] [𝑝𝑖] ≥ 2𝑛𝑥 − 𝐴[𝑖] [𝑝𝑖] .cnt and

𝑛𝑥 ≤
𝑀 [𝑖] [𝑝𝑖] + 𝐴[𝑖] [𝑝𝑖] .cnt

2
.

□

As this lemma holds for every 𝑖 ∈ 𝐼𝑥 , we conclude that

𝑛𝑥 ≤Θ2 = min𝑖 ∈ 𝐼𝑥 {Θ𝑖2} ≤ min𝑖 ∈ 𝐼𝑥 {𝑀 [𝑖] [𝑝𝑖]}. Combined with the conclusion of Lemma 3-1, we

have 𝑛𝑥 ≤CK(𝑥) = ⌊min{Θ1,Θ2}⌋ ≤CMS(𝑥).

3.5.2.3 Precise estimation when some |𝑉 𝑖𝑥 | ∈ {0, 1}

If there exists an 𝑖 such that
��𝑉 𝑖𝑥 �� = 0, then 𝑀 [𝑖] [𝑝𝑖] = 𝐴[𝑖] [𝑝𝑖] = 𝑛𝑥 . Hence, in this special

case, both CMS(𝑥) = 𝑛𝑥 and HK(𝑥) = 𝑛𝑥 . When this is not the case, 𝑛𝑥 < 𝑀 [𝑖] [𝑝𝑖] for all 𝑖 ∈ [𝑘],

so 𝑛𝑥 < CMS(𝑥). For CK, on the other hand, if there exists a row 𝑖 such that |𝑉 𝑖𝑥 | = 1, we still have

CK(𝑥) = 𝑛𝑥 . Our next result, which is a corollary of Lemmas 3-1 and 3-2, shows that either one of

Θ𝑖1 or Θ𝑖2 is precisely 𝑛𝑥 , or the smaller of the two is 𝑛𝑥 ± 1/2. Thus CK(𝑥) = ⌊min{Θ1,Θ2}⌋ = 𝑛𝑥 .

59

Corollary 1. Let 𝑖 ∈ [𝑘] be such that |𝑉 𝑖𝑥 | = 1. If the stream satisfies the NFC condition, then

𝑖 ∈ 𝐼𝑥⇒ 𝑛𝑥=
𝑀 [𝑖] [𝑝𝑖] − 𝐴[𝑖] [𝑝𝑖] .cnt

2
+𝑐 with 𝑐 ∈ {1/2, 0},

𝑖 ∈ 𝐼𝑥⇒ 𝑛𝑥=
𝑀 [𝑖] [𝑝𝑖] + 𝐴[𝑖] [𝑝𝑖] .cnt

2
+𝑐 with 𝑐 ∈ {−1/2, 0}. ♦

Proof of corollary 1. We think of the counter 𝐴[𝑖] [𝑝𝑖] .cnt as counting the depth of a stack of

fingerprint-labeled plates as for the proof of Lemma 3-1 and associate occurrences of 𝑥 and 𝑦 ∈ 𝑉 𝑖𝑥
in the similar way.

Moreover, |𝑉 𝑖𝑥 | = 1 implies 𝑀 [𝑖] [𝑝𝑖] = 𝑛𝑥 + 𝑛𝑧, or equivalently, 𝑛𝑧 =𝑀 [𝑖] [𝑝𝑖] − 𝑛𝑥 for 𝑧 ≠ 𝑥.

We start by focusing on the case 𝑖 ∈ 𝐼𝑥 (𝐴[𝑖] [𝑝𝑖] .fp≠ fp𝑧). Say 𝑥 at some point owned the

counter. Then, the plate at the bottom of the stack (labeled with fp𝑧) corresponds to a occurrence

of 𝑧 that popped off a plate of 𝑥. So, only 𝐴[𝑖] [𝑝𝑖] .cnt − 1 occurrences of 𝑧 are not associated

with 𝑥 implying 𝑛𝑧 = 𝑛𝑥 + 𝐴[𝑖] [𝑝𝑖] .cnt − 1. Hence, 𝑀 [𝑖] [𝑝𝑖] − 𝑛𝑥 = 𝑛𝑥 + 𝐴[𝑖] [𝑝𝑖] .cnt − 1, or

equivalently, 𝑛𝑥 = 𝑀 [𝑖] [𝑝𝑖]−𝐴[𝑖] [𝑝𝑖] .cnt+1
2 . Say 𝑥 never owned the counter. Then, none of the

occurrences of 𝑧 with a plate on the stack popped an 𝑥-plate from the stack. This implies that

𝑛𝑧 = 𝑛𝑥 + 𝐴[𝑖] [𝑝𝑖] .cnt, and 𝑛𝑥 = 𝑀 [𝑖] [𝑝𝑖]−𝐴[𝑖] [𝑝𝑖] .cnt
2 .

Let now 𝑖 ∈ 𝐼𝑥 (𝐴[𝑖] [𝑝𝑖] .fp= fp𝑥). Say 𝑥 was the only owner of the counter. Then, none of

the occurrences of 𝑥 with a plate on the stack popped an 𝑧-plate from the stack. Thus,

𝑛𝑥 = 𝑛𝑧 + 𝐴[𝑖] [𝑝𝑖] .cnt and, adding 𝑛𝑥 to both sides and rearranging, 𝑛𝑥 = 𝑀 [𝑖] [𝑝𝑖]+𝐴[𝑖] [𝑝𝑖] .cnt
2 . Say 𝑧

at some point owned the counter. Then, the plate at the bottom of the stack (labeled with fp𝑥)

corresponds to the occurrence of 𝑥 that popped off a plate of 𝑧, and 𝑛𝑥 = 𝑛𝑧 + 𝐴[𝑖] [𝑝𝑖] .cnt − 1 and

𝑛𝑥 =
𝑀 [𝑖] [𝑝𝑖]+𝐴[𝑖] [𝑝𝑖] .cnt−1

2 . □

Finally, we note one more case when CK(𝑥) = 𝑛𝑥 . If one of the 𝑥’s buckets holds

uninitialized fingerprint, i.e. 𝑖 ∈ [𝑘] such that 𝐴[𝑖] [𝑝𝑖] .fp=★, then |𝑛̂𝑥 − 𝑛𝑥 | = 0. This is because

1) the HK has the property that if 𝑥 maps to a position in 𝐴 with an uninitialized fingerprint,

then 𝑥 was never inserted (i.e., 𝑛𝑥 = 0); and 2) we define CK to return 𝑛̂𝑥 = 0 if any of 𝑥’s positions

in 𝐴 holds an uninitialized fingerprint.

60

3.5.3 Frequency estimate errors

In this section we extend the frequency estimation error analysis of CMS to CK. We have

already seen that the CK estimate is never worse than the CMS estimate; in this section, we

explore how much better it can be.

We begin with a simple theorem about the relationship between Θ1 and the plain CMS

estimate.

Theorem 3-1. Fix an 𝑥 ∈ U, and let 𝑖∗ be any row index such that CMS(𝑥) = 𝑀 [𝑖∗] [𝑝𝑖∗]. If

𝑖∗ ∈ 𝐼𝑥 then either CK(𝑥) = 𝑛𝑥 , or
(
Θ1 ≤ CMS(𝑥)

2

)
. ♦

Proof. If any 𝐴[𝑖] [𝑝𝑖], 𝑖 ∈ [𝑘] has an uninitialized fingerprint, then CK(𝑥) = 𝑛𝑥 = 0. Now

assume this is not the case, so that 𝐴[𝑖] [𝑝𝑖] .cnt ≥ 1 for all the counters associated to 𝑥. By

definition Θ1 = min𝑖∈𝐼𝑥 Θ
𝑖
1 ≤ Θ𝑖

∗

1 , and so Θ1 ≤ 𝑀 [𝑖∗] [𝑝𝑖∗]−𝐴[𝑖∗] [𝑝𝑖∗] .cnt+1
2 ≤ CMS(𝑥)

2 . □

Next, a similar theorem relating Θ2, the plain CMS estimate, and the HK estimate (when 𝑑 = 1).

Theorem 3-2. Fix an 𝑥 ∈ U, and let 𝑖∗ be any row index such that CMS(𝑥) = 𝑀 [𝑖∗] [𝑝𝑖∗]. If

𝑖∗ ∈ 𝐼𝑥 then either CK(𝑥) = 𝑛𝑥 or
(
Θ2 ≤ CMS(𝑥)+HK(𝑥)

2

)
. ♦

Proof. If any 𝐴[𝑖] [𝑝𝑖], 𝑖∈[𝑘] has an uninitialized fingerprint, then CK(𝑥) = 𝑛𝑥 = 0. Now assume

this is not the case, so 𝐴[𝑖∗] [𝑝∗
𝑖
] .cnt ≤ max𝑖∈I𝑥 𝐴[𝑖] [𝑝𝑖] = HK(𝑥). We have,

Θ2= min𝑖∈𝐼𝑥 Θ𝑖2 ≤ Θ𝑖
∗

2 =
𝑀 [𝑖∗] [𝑝∗

𝑖
]+𝐴[𝑖∗] [𝑝∗

𝑖
] .cnt

2 ≤ CMS(𝑥)+HK(𝑥)
2 . □

Now, if CK(𝑥) is determined by line 10 of Figure 3-10, then CK(𝑥) = CMS(𝑥)+HK(𝑥)
2 . On the other

hand, if CK(𝑥) is determined by line 15, then CK(𝑥) = 0 ≤ CMS(𝑥)+HK(𝑥)
2 . If neither of these

holds, CK(𝑥) = ⌊min{Θ1,Θ2}⌋. Thus, Theorem 3-1 and 3-2 imply

⌊min{Θ1,Θ2}⌋ ≤ CMS(𝑥)+HK(𝑥)
2 , giving us the following lemma.

Lemma 3-3. For any 𝑥 ∈ U, CK(𝑥) ≤ CMS(𝑥)+HK(𝑥)
2 . ♦

From here, it is straightforward to bound the CK estimation error, giving us the main result of this

section.

61

Corollary 2. Let 𝑥 ∈ U. If the stream satifies the NFC condition, then

CK(𝑥) − 𝑛𝑥 ≤ CMS(𝑥)−HK(𝑥)
2 . ♦

Proof of corollary 2. The NFC condition gives CK(𝑥) ≥ 𝑛𝑥 ≥HK(𝑥), and

CK(𝑥) − 𝑛𝑥 ≤CK(𝑥) − HK(𝑥). So, by Lemma 3-3 we arrive at

CK(𝑥) − 𝑛𝑥 ≤
(
CMS(𝑥) + HK(𝑥)

2

)
− 𝑛𝑥

≤
(
CMS(𝑥) + HK(𝑥)

2

)
− HK(𝑥)

≤ CMS(𝑥) − HK(𝑥)
2

.

□

3.5.3.1 Consequences of corollary 2

First, as CMS(𝑥) and HK(𝑥) approach each other — even if both are large numbers (e.g.

when the stream is long and 𝑥 is relatively frequent) — the error in CK(𝑥) approaches zero.

Next, because CMS is a count-all structure, the worst case guarantee is that the error

CK(𝑥) − 𝑛𝑥 ≤ CMS(𝑥)/2, i.e., when HK(𝑥) = 0. This occurs iff 𝑥 does not own any of its

counters, which implies that 𝑥 is not the majority element in any of the substreams observed by the

positions 𝐴[𝑖] [𝑝𝑖] .cnt to which 𝑥 maps. As 𝑀 [𝑖] [𝑝𝑖] observes the same substream as 𝐴[𝑖] [𝑝𝑖],

and CMS(𝑥) = min𝑖∈[𝑘]{𝑀 [𝑖] [𝑝𝑖]}, for practical values of 𝑘, 𝑚 it is unlikely that all 𝑘 of the 𝑉 𝑖𝑥

have unexpectedly large numbers of elements. Moreover, for typical distributions seen in practice

(e.g., power-law distributions that have few true heavy elements), it is even less likely that all of

the 𝑉 𝑖𝑥 contain a heavy hitter. Thus under “honest” conditions, we do not expect CMS(𝑥) be very

large when HK(𝑥) is very small.

This last observation surfaces something that CK can provide, and neither CMS nor HK

can: the ability to signal when the incoming stream is atypical. We explore this in detail in

Section 3.5.6.

62

3.5.4 Experimental Results

We will now compare non-adversarial performance of the compact frequency estimators

(CFEs) by measuring the ability of these structures in identifying the most frequent (heavy)

elements of a stream. Finding the heavy elements of a stream is the typical use case of CFEs and

as such these structures are used for that purpose in many systems level

applications [47, 52, 53, 54, 23, 55, 56]. The ability to accurately identify these heavy elements is

based on a CFE’s ability to accurately make frequency estimations on these heavy elements, while

maintaining the ability to make accurate frequency estimations on the non-heavy elements, such

that one would be able to distinguish between the two classes of elements. Therefore, we

experimentally measure the non-adversarial performance of these structure by comparing a

number of performance metrics in identifying heavy elements across three different streams.

3.5.4.1 Data streams

We have three different streams we experiment with. We sourced two streams from a

frequent item mining dataset repository5. We also sourced an additional stream by processing a

large English language novel from Project Gutenberg.

We summarize each of these three streams and why they are of particular interest to

experiment on below.

1. Kosarak Stream: This data collection contained anonymized click-rate data collected from

visits to an online Hungarian news site. The resultant stream is of total length 8, 019, 015

with 41, 270 distinct elements. As aforementioned, we sourced this stream from a frequent

item mining dataset repository which is a collection of data sets meant to test frequent item

finding algorithms on – the very task which we are doing. We flattened the raw collection of

data such that it would resemble a stream that could be processed item-by-item.

2. Novel Stream: We created a stream by processing the individual words sequentially of The

Project Gutenberg eBook plaintext edition of the 1851 English-language novel

“Moby-Dick; or, The Whale” by Herman Melville (ignoring capitalization and
5http://fimi.uantwerpen.be/data/

63

http://fimi.uantwerpen.be/data/

non-alphabetical characters) [57]. Long bodies of natural language obey an approximate

Zipf distribution as the frequency of any word is inversely proportional to its rank in an

ordered frequency list [58]. It is of interest to measure compact frequency estimators

performance against data following a Zipf distribution [55, 59, 47, 53, 54, 56]. The stream

is of total length 2, 174, 111 with 19, 215 distinct elements.

3. Retail Stream: This data collection contained anonymized shopping data from a Belgian

retail store. The resultant stream is of total length 908, 576 and contains 16, 740 distinct

elements. This data set is also from the frequent items mining dataset repository. As with

the Kosarak stream we flattened the raw data such that it would resemble a stream after

processing.

3.5.4.2 Measures and metrics

We want to measure the performance of the CFEs of interest in the non-adversarial setting

by determining how well they are able to identify and characterize the heavy elements in the

streams above.

This problem, with varying but related definitions, is referred to in the literature as the

heavy-hitters problem, the hot-items problem, or the top-𝐾 problem.

The simplest of these definitions to apply is that of the top-𝐾 problem, which is to simply

report the set of elements with the 𝐾 highest frequencies (for some 𝐾) for a given stream. That is

given elements of a stream ®𝑆 ⊆ {𝑒1, 𝑒2, . . . , 𝑒𝑀} with associated frequencies (𝑛𝑒1 , 𝑛𝑒2 , . . . , 𝑛𝑒𝑀)

we can order the elements {𝑒∗1, 𝑒
∗
2, . . . , 𝑒

∗
𝑀
} such that (𝑛∗𝑒1 ≥ 𝑛

∗
𝑒2 ≥ . . . ≥ 𝑛

∗
𝑒𝑀
). Then for

some 𝐾 ∈ Z+ we output the set of elements {𝑒∗1, 𝑒
∗
2, . . . , 𝑒

∗
𝐾
} with the 𝐾 highest

frequencies (𝑛∗𝑒1 ≥ 𝑛
∗
𝑒2 ≥ . . . ≥ 𝑛

∗
𝑒𝐾
).

The top-𝐾 problem can be solved exactly given space linear to that of the stream by keeping

an individual counter for each distinct element in the stream. It is not possible to solve exactly

with space less than linear (see [60] for a formal impossibility argument), but it is a common

technique to place a small data structure such as a min-heap restricted to size 𝐾 on top of a CFE

64

and by updating this small structure on each insertion once, one is able to approximate this top-𝐾

set [47, 52, 54].

For our purposes we simply compute the approximate top-𝐾 by processing the stream with a

compact frequency estimator, querying on every distinct element in the stream, and ordering

elements by approximated frequency. Likewise, we compute a true top-𝐾 for each stream by

processing said stream with a map linear in the size of the stream, computing a frequency for each

element, and ordering by true frequency. We note that we would have achieved identical results by

putting a min-heap on top of each structure with fixed sized 𝐾 , updating as described in [47] and

outputting its contents once the entire stream has been processed. However, for experimental

purposes our approach is more extensible than the one that would be used in practice.

The number of heavy elements, or perhaps the number of heavy elements one would care

about, varies depending on the stream and the application. For instance, it is noted that in a

telecommunications scenario when monitoring the top outgoing call destinations of a customer

typically a value of 𝐾 in the range of 10 − 20 is appropriate [61]. Moreover, when identifying the

most frequent elements of interest of Zipfian distribution it is often of interest to vary 𝐾 based on

the parameters of the underlying distribution [55].

We select 𝐾 for each stream by observing the number of clearly identifiable outliers in the

underlying stream. We do this by visually inspecting the selected streams’ frequency plots. We set

the 𝑥-axis to enumerate all distinct elements in a stream, ordered from most to least frequent and

the 𝑦-axis as those distinct elements’ corresponding frequencies. We make a cut-off around the

point where the frequencies went from very peaked (distinct with prominent frequency jumps from

element to element) to flat (many elements with about the same frequency – the point at which the

frequency differences decline less sharply). These frequency plots can be seen in Figure 3-11. We

set 𝐾 = 20 for the Kosarak stream, 𝐾 = 22 for the novel stream, and 𝐾 = 22 for the retail stream.

We measure the accuracy of the non-adversarial performance according to four different

metrics.

65

1. Set Intersection Size (SIS): This measures the size of the set intersection of the true top-𝐾

set K of the stream and the estimated top-𝐾 set K̃ as reported by the CFE: SIS = |K ∩ K̃ |.

This is measure of precision on the estimated top-𝐾 set as compared to the true top-𝐾 set. A

SIS of 𝐾 would imply perfect precision.

2. Jaccard Index (JI): The JI is a statistic that measures the similarity of two sets [62]. We use

the statistic to determine the similarity of the true top-𝐾 set K of the stream and the

estimated top-𝐾 set K̃ as reported by the CFE. It is defined as JI = |K∩K̃ ||K∪K̃ | . A JI can be in the

range [0, 1], with a JI of 1 implying a perfect characterization of the true top-𝐾 set by the

CFE in its top-𝐾 estimation.

3. Minimal Top-𝐾̃ to Capture True Top-K (MCT): This measures determines the minimal

size 𝐿 ≥ 𝐾 the estimated top-k set K̃ would need to be to capture all elements contained in

the true top-𝐾 set K. That is if one were to order the frequency estimates of all items made

by a particular CFE, we would determine the number of items one would need to examine

(starting from the most-frequent going down to the least-frequent) until all the elements

from K were contained in that ordered set. Thus, 𝐿 − 𝐾 indicates the number of elements

that fall out of K that are incorrectly being individually estimated to be greater than at least

one element that is truly in K.

4. Average Relative Error on Top-k elements (ARE): Average Relative Error is a standard

measure to use when comparing CFEs [47]. It is defined as ARE = 1
𝐾

∑𝐾
𝑖=1
|𝑛𝑖−𝑛𝑖 |
𝑛𝑖

where

𝑖 ∈ [𝐾] indexes the true top-𝐾 elements for a particular stream.

3.5.4.3 Results

We crafted reference implementations for all three CFEs of interest: CMS, HK, and CK6.

They are implemented in Python3 and use the BLAKE2b cryptographic hash function for

independent row hash functions and for a fingerprint hash function in the case of CK and HK.
6Source code is available at: https://github.com/smarky7CD/cfe-in-adv-envs

66

https://github.com/smarky7CD/cfe-in-adv-envs

We are interested in comparing performance when the space used by the structures is held

constant. Observe that CK is three times as large as CMS, and HK is twice as large as CMS

assuming the same space is used for a counter bucket and a fingerprint bucket (in the CK and HK)

across all structures. In practice these buckets could be (say) 32-bits. We picked two sets of

parameters, a standard set and a constrained set to test.

The standard set of parameters set 𝑚 = 2048, 𝑘 = 4 for CMS, 𝑚 = 1024, 𝑘 = 4 for HK,

and 𝑚 = 910, 𝑘 = 3 for CK. This corresponds to 32.76 kB of space when using a 32-bit bucket

sizes. We experimentally show that at this size all the structures are able to identify the heavy

elements of the streams we test upon with minimal to no error.

The constrained set of parameters sets 𝑚 = 512, 𝑘 = 4 for CMS, 𝑚 = 256, 𝑘 = 4 for HK,

and 𝑚 = 341, 𝑘 = 2 for CK. This corresponds to just 8.19 kB of space when using a 32-bit counter

and fingerprint bucket sizes. In this space constrained setting the structures are still able to

identify the heavy elements of the streams we test upon, but with some degree of moderate error.

For HK, we set 𝑑 = 0.9 for all experiments, as this is the default chosen by Redis [46] and

satisfies the desired properties of the exponential decay function stated in [47].

We ran 1000 trials for each structure, stream, and parameter triplet using our reference

implementations. We randomize each trial on the particular choice of hash functions used for the

rows (by selecting a random per-trial seed), as well as the order in which the items in the stream

are processed. The latter simulates an item being randomly drawn from the underlying

distribution of the stream. We averaged our four metrics for each structure, stream and parameter

triplet over the 1000 trials.

We present a summary of the results in Table 3-1. For the standard parameter set we see that

CK and HK perform best, being able to perfectly capture the true top-𝐾 set for each stream with

their outputted estimated top-𝐾 set in every trial. This is indicated by the SIS and MCT being

equal to 𝐾 and the JI being equal to 1 for each stream. Moreover, the estimates on these top-𝐾

elements for both of these structures were very tight. The ARE over all trials and streams was 0

67

Table 3-1. A summary of non-adversarial setting results between the CK, CMS, and HK compact
frequency estimators.

Structure Parameters
(m,k) Stream SIS JI MCT ARE

Standard

CK (910,3) Kosarak (𝐾 = 20)
Novel (𝐾 = 22)
Retail (𝐾 = 22)

20
22
22

1
1
1

20
22
22

≈ 0
≈ 0
≈ 0

CMS (2048,4)
19.303
22.999
21.643

0.934
0.999
0.997

20.901
22.001
22.405

0.017
0.009
0.040

HK (1024,4)
20
22
22

1
1
1

20
22
22

≈ 0
≈ 0
≈ 0

Constrained

CK (341,2) Kosarak (𝐾 = 20)
Novel (𝐾 = 22)
Retail (𝐾 = 22)

17.189
21.617
13.442

0.757
0.967
0.441

28.695
22.451
209.439

≈ 0
≈ 0

0.021

CMS (512,4)
18.241
21.638
18.745

0.841
0.969
0.745

24.567
22.473
41.609

0.125
0.062
0.296

HK (256,4)
20
22

21.976

1
1

0.998

20
22

55.008

≈ 0
0.001
0.005

(ignoring a small rounding error). This indicates that CK and HK nearly perfectly individually

estimated every single element in the true top-𝐾 across all trials.

CMS with the standard parameter sizing performs almost as well. Only failing to capture

the true top-𝐾 set with its estimated set a few number of times over the 1000 trials. This is

indicated by the SIS and MCT being very close to 𝐾 and the JI being very close to 1 for each

stream. However, CMS, as it is prone to overestimation on every element, has slightly higher ARE

than the other structures.

The constrained set of parameters presents a challenge for all the CFEs in computing

individual frequency estimations on elements in the streams, and as a result computing an

accurate estimated top-𝐾 . This setting only allocates CK a measly 642 individual counters to

compactly represent streams that all have over 19, 000 distinct elements. Under these conditions,

HK performs best according to our metrics. It perfectly captures the true top-𝐾 in both the

68

Kosarak and Novel stream, while only failing to do so in a handful of trials with the Retail stream.

Moreover, the ARE is small across all streams – comparatively less than CMS with the standard

parameters. HK by design prioritizes providing accurate estimates on the most frequent elements,

by way of its probabilistic decay mechanism. So while it performs well on this task, it severely

underestimates middling and low frequency elements at this sizing, reporting an individual

frequency estimate very near 0 for any element that is not heavy.

CMS and CK perform less well in this small space allocation setting. While CMS performs

slightly better in capturing the true top-𝐾 set within its estimated top-𝐾 set, CK continues to give

better accuracy on individual point estimations of the true top-𝐾 elements across streams due to

its internal sub-estimators that provide tighter estimations than CMS.

We observe in this constrained space setting across the structures measured performance is

the worst on the Retail stream. This is because the Retail stream has a flatter distribution as

compared to the other streams. That is to say, it has very few clearly identifiable heavy elements

before containing a large collection of elements of about the same frequency. This can be seen in

the frequency plot in Figure 3-11. The Retail element with frequency rank 22 has a true frequency

of 1715 while the Retail element of frequency rank 56 has a true frequency of 1005. Comparing

this to 𝑛22 = 22631, 𝑛56 = 9559 and 𝑛22 = 1176, 𝑛56 = 474, respectively for the Kosarak and Novel

stream, one can see that the relative fall off in true frequency is far less pronounced within this

region of the Retail stream. This in turn leads to small errors in the individual frequency

estimations of elements near (but outside) the true top-𝐾 of the Retail stream propagating to the

top-𝐾 estimation – by making it challenging for the CFEs to draw a clear distinction between the

truly heavy elements and the nearly heavy elements. The upshot being, one needs larger structures

to accurately estimate these flatter streams.

In sum, CK performs comparatively well to both CMS and HK in this particular task. In

fact, CK performed better than CMS when not burdened with very tiny space constraints. It is

able to perfectly estimate the true top-𝐾 for all streams over all trials with only 2730 individual

69

counters in the standard parameter setting, while also being adversarial robust where the others

structures are not.

3.5.5 Attacks Against the CK

Our attacks against CK are almost one-to-one with those we present against the CMS with

one major difference. Recall from Corollary 1 that if at least one counter in some row 𝑖 of the

element 𝑥 we are querying on maps to has |𝑉 𝑖𝑥 | ≤ 1 then CK returns estimate 𝑛̂𝑥 such that 𝑛̂𝑥 = 𝑛𝑥 ,

i.e. CK(𝑥) is a perfect estimate of 𝑥. This implies that for an error to exist in a frequency

estimation of 𝑥 it must be that ∀𝑖 ∈ [𝑘] it is necessary that |𝑉 𝑖𝑥 | ≥ 2. In the attack setting this

means we need to find a 2-cover (specifically a (F P𝑥 , 𝑥, 2)-cover) on 𝑥 to create error.

A 2-cover C for 𝑥 contains elements {𝑦1, 𝑦2, . . . , 𝑦𝑡} such that for every counter 𝑥 maps to in

positions (𝑝1, 𝑝2, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥) it is such that at least two distinct elements in C cover each

counter. In our attack model we assume an initially empty representation and we never insert 𝑥 in

any of our attacks (except for once to discover its counter positions in the public representation,

private hash setting).

We attack CK in a two-step process, as with CMS and HK. We first find a 2-cover for our

target element 𝑥 and then repeatedly insert the 2-cover to create error. Under the assumption that 𝑥

does not own any of its counters in the 𝐴 substructure of the CK (which is guaranteed in our attack

model7), then the Θ1 sub-estimator will be used to make the final error evaluation Qry query on 𝑥.

Say that after some process of finding a 2-cover for 𝑥 (which will be of size ≤ 2𝑘 – for this

discussion we will assume the size of the 2-cover is exactly 2𝑘) we have 𝜔 insertions to repeatedly

insert the elements in the cover. Repeated and equal insertions of each of the elements in the

2-cover for 𝑥 will cause the values in all of 𝑥’s counters in the 𝑀 substructure of the CK to be of

value 𝜔
𝑘

. In the 𝐴 substructure the value in the counters that 𝑥 maps to will have value 1 and be

owned by some element in the 2-cover. This is because (under the no-fingerprint collision

assumption) in the initially empty structure, ownership of said counters will flip-flop on each
7Save for the trivial case in the public representation, private hash setting when no cover is able to be found.

70

iteration of the insertions of the 2-cover between the two distinct elements that map to these

counters in accordance with the Up algorithm of the HK with 𝑑 = 1.

Then applying the estimation from Θ1 we see that we will generate error on 𝑥 equal to 𝜔
2𝑘 . If

we hold 𝑘 constant and assume that we are attacking a CMS under the same conditions (we have

found a 1-cover for a target 𝑥 through some process and have 𝜔 insertions to accrue error) we will

have an error of 𝜔
𝑘

, which is twice that of the CK under the same conditions. Under the same

assumptions for HK, in addition to the assumption that we have already locked-down the counters

of the target with initial insertions of the cover in the structure, we will achieve an error on the

target of 𝜔 – which is 𝜔 − 𝜔
2𝑘 greater than that of the CK. We will see this pattern holds when

giving concrete experimental attack error results at the conclusion of this section.

3.5.5.1 Public hash and representation setting

As our other attacks (for CMS and HK) in this setting, the CK attack (Figure 3-12) can be

viewed as a two-step process. In this setting, we find a 2-cover for target 𝑥 using the Hash oracle

only, and then accumulate error for the target by repeatedly inserting the 2-cover. Each insertion

of the 2-cover increases the error by one. The two cover can be inserted at least 𝑞𝑈2𝑘 as the size of

the cover is ≤ 2𝑘 . We apply the same analysis used for the CMS attack, but replace 𝑘 (1 + 𝐿1) with

𝑘 (1 + 𝐿2) as the number of Hash-queries to complete the cover-finding step, as again, we now

find a 2-cover. Assuming 𝑞𝑈 > 2𝑘 (so that any found C can be inserted at least once) we arrive at

E[Err] ≥
⌊
𝑞𝑈
2𝑘

⌋
Pr

[
𝐿2 ≤ 𝑞𝐻−𝑘

𝑘

]
Using results from Section 3.4.1 we can further obtain a concrete

expression for Pr
[
𝐿2 ≤ 𝑞𝐻−𝑘

𝑘

]
.

3.5.5.2 Private hash and representation setting

Our CK attack for the setting (Figure 3-13) is essentially the same as the CMS attack, except

a 2-cover (as opposed to a 1-cover) is detected and repeatedly inserted to build up the error. Using

analysis similar to the CMS case and assuming 𝑞𝑄 is not the limiting factor,

Err ≥
⌊(
ℓ + 1

2
+ 1
ℓ

(
𝑞𝑈 +

ℓ−1∑︁
𝑖=1
(ℓ − 𝑖)𝛿𝑖

)
− 𝐿2

)⌋

71

with ℓ ≤ 2𝑘 rounds to find a 2-cover. The error bound is similar to the one for the CMS

attack, but with 𝐿1 replaced with 𝐿2 as now | ®𝐼 | is precisely 𝐿2.

For reasonable sizes of the CK we mainly expect ℓ = 2𝑘 (for the CMS case we expected

ℓ=𝑘) and that E [𝛿1] are bounded by a constant that is small relative to 𝑚, 𝑞𝑈/𝑘 . Given that

𝑘 ≪ 𝑚, we expect the following to approximate E[Err]:

E

[⌊(
2𝑘 + 1

2
+ 1

2𝑘

(
𝑞𝑈 +

2𝑘−1∑︁
𝑖=1
(2𝑘 − 𝑖)𝛿𝑖

)
− 𝐿2

)⌋]
≈ 𝑞𝑢

2𝑘
− E[𝐿2] .

3.5.5.3 Public hash and private representation setting

As with the CMS, the attack and analysis from the public hash and representation setting

applies.

3.5.5.4 Private hash and public representation setting

This attack (Figure 3-14) is one-to-one with the CMS attack in the same setting, but again

we find 2-cover as opposed to a 1-cover. Hence, E[Err] ≥ 𝑞𝑈−1−E[𝐿2]
2𝑘 ⪆ 𝑞𝑈−1−2𝑚𝐻𝑘

2𝑘 .

3.5.5.5 Attack comparisons

Table 3-2. A comparison of Err accumulated by the different structures during attacks in the public hash
setting and the private hash, private representation setting. We give the average size of the cover
set and average error accumulated in each structure, setting pair over the 100 experiment trials.
We also give the E[Err] according to our analysis.

Public Hash Setting Private Hash,
Private Rep Setting

Structure |cov| Exp. Err E[Err] |cov| Exp. Err E[Err]
CK, (𝑚 = 682, 𝑘 = 4) 7.96 131821.00 131072.00 7.96 130796.69 127432.90

CMS, (𝑚 = 2048, 𝑘 = 4) 3.99 263017.82 262144.00 3.99 261116.16 257877.34
HK, (𝑚 = 1024, 𝑘 = 4) 3.99 1047502.69 1047500.00 4.0 1038804.55 1038018.54
CK, (𝑚 = 1365, 𝑘 = 8) 15.97 65667.10 65536.00 15.93 63776.52 56618.28

CMS, (𝑚 = 4096, 𝑘 = 8) 8.00 131072.00 131072.00 7.99 127029.66 119939.65
HK, (𝑚 = 2048, 𝑘 = 8) 7.96 1046434.76 1046424.00 7.98 1007439.04 996946.87

We implemented our attacks against all structures in all settings to experimentally verify

their correctness and our analysis. In Table 3-2 we present a summary of results for the public

hash setting (our least restrictive setting) and the private hash, private representation setting (our

most restrictive setting.). We experiment on two sets of parameters, one fixing 𝑘 = 4 and the

72

other 𝑘 = 8. We then select a reasonable value of 𝑚 for CMS and then half it for HK and third it

for CK so that the same space is used in each structure. We fix adversarial resources such

that 𝑞𝐻 , 𝑞𝑈 , 𝑞𝑄 = 220. In practice this ensures that the number of Hash queries or Qry queries

will not be the bottleneck in our attacks and that we are able to generate sufficient error in each

attack to showcase overall trends. We run each attack setting and structure pairing over 100 trials,

selecting a random target in each trial, and average the results.

Observe the pattern that when holding 𝑘 constant and setting reasonable 𝑚 values, adjusting

such that CMS, CK, and HK use the same space, attacks against CK generate the least amount of

error. The attacks against CK produce about half of the amount of error as opposed to the CMS

attacks, and about 𝑞𝑈 − 𝑞𝑈
2𝑘 less the amount of error as opposed to the HK attacks. Moreover,

observe that our analytical results closely match those of our experimental results.

3.5.6 Adversarial Robustness

Corollary 2 shows that the error in CK(𝑥) is largest when HK(𝑥) ≪ CMS(𝑥). In particular,

when 𝑥 does not own any of its counters HK(𝑥) takes on its minimal value of zero. But we can say

something a bit more refined, by examining what is computed on the way to the returned value

CK(𝑥).

Specifically, recall that CK(𝑥) = ⌊min{Θ1,Θ2}⌋, where Θ1 is the smallest upperbound on 𝑛𝑥

that we can determine by looking only at the rows that 𝑥 does not own, and Θ2 is the smallest

upperbound on 𝑛𝑥 that we can determine by looking only at the rows that 𝑥 does own. Let

Δ = |CK(𝑥) − 𝑛𝑥 | be the potential error in the estimate CK(𝑥). Dropping the floor for brevity, if

CK(𝑥) = Θ1 then Lemma 3-2 tells us that Δ ≤ (𝑀 [𝑖∗] [𝑝𝑖∗] − 𝐴[𝑖∗] [𝑝𝑖∗] .cnt + 1)/2, where

𝑖∗ ∈ { 𝑗 | Θ 𝑗

1 = min𝑖∈𝐼𝑥 {Θ
𝑖
1}}.

Likewise, if CK(𝑥) = Θ2 then by Lemma 3-2 we have 𝑛𝑥 ≤ (𝑀 [𝑖∗] [𝑝𝑖∗] + 𝐴[𝑖∗] [𝑝𝑖∗] .cnt)/2,

where now 𝑖∗ ∈ { 𝑗 | Θ 𝑗

2 = min𝑖∈𝐼𝑥 {Θ𝑖2}}. In this case 𝐴[𝑖∗] [𝑝𝑖∗] .cnt ≤ 𝑛𝑥 , so we know that

Δ ≤ (𝑀 [𝑖∗] [𝑝𝑖∗] + 𝐴[𝑖∗] [𝑝𝑖∗] .cnt)/2 − 𝐴[𝑖∗] [𝑝𝑖∗] .cnt = (𝑀 [𝑖∗] [𝑝𝑖∗] − 𝐴[𝑖∗] [𝑝𝑖∗] .cnt)/2. Adding

1/2 to this upperbound gives the same expression as in the previous case.

73

Thus, we can augment the basic version of CK so that Qry(qry𝑥) computes Δ, and returns a

boolean value flag along with the estimate of 𝑛𝑥 . The value of flag would be set to 1 iff Δ ≥ 𝜓𝑁 ,

where 𝑁 is the length of currently inserted stream and 𝜓 is a parameter. We choose this condition

because the non-adaptive correctness guarantees of CMS have a similar form: with 𝑘 rows and

𝑚 counters per row, the estimate CMS(𝑥) is such that Pr [CMS(𝑥) − 𝑛𝑥 ≤ 𝜖𝑁] ≥ 1 − 𝛿 when

𝜖 = 𝑒/𝑚, 𝛿 = 𝑒−𝑘 .

Observe that when the frequency estimation error on an element 𝑥 is large, then row 𝑖∗ will

be such that 𝑀 [𝑖∗] [𝑝𝑖∗] will have a large value and 𝐴[𝑖∗] [𝑝𝑖∗] .cnt will have a value very small

relative to the value in 𝑀 [𝑖∗] [𝑝𝑖∗]. In the worst case 𝐴[𝑖] [𝑝𝑖∗] .cnt = 1 – in our attacks we force

this to be the case. Taking 𝐴[𝑖∗] [𝑝𝑖∗] .cnt ≈ 0, observe that whether CK(𝑥) is determined by Θ1

or Θ2, we see CK(𝑥) ≈ (1/2)𝑀 [𝑖∗] [𝑝𝑖∗] ≈ (1/2)CMS(𝑥) in this high error case. Then rolling in

the non-adaptive CMS correctness guarantee we see Pr[Δ > (1/2) (𝜖𝑁) − (1/2)𝑛𝑥] ≤ 𝛿 and

certainly Pr[Δ > 1/2(𝜖)𝑁] ≤ Pr[Δ > 1/2(𝜖)𝑁 − (1/2)𝑛𝑥], thus setting 𝜓 = (1/2)𝜖 (where we

can derive 𝜖 from parameter 𝑚) can be a useful starting point for setting 𝜓. As a caveat, however,

as 𝑁 becomes large, an adversarial stream may be able to induce significant error by setting 𝜓 in

this way (due to the looseness of the CMS bound). Depending on the deployment scenario,

smaller values of 𝜓, or even sublinear functions of 𝑁 , may be more appropriate for detecting

abnormal streams.

Nonetheless, we implemented an version of CK with flag-raising (see Figure 3-15), and

set 𝑚 = 1024, 𝑘 = 4. This corresponds to 𝜖 = 0.00265, 𝛿 = 0.0183. We then set 𝜓 = 0.0012 < 1
2𝜖 .

Against it, we ran 100 trials of the public hash, public representation attack with 𝑞𝑈 = 216, and

with per-trial random target elements 𝑥. The average error was 8203.71, and in every trial the

warning flag was raised on the frequency estimation of the target element.

For comparison, we also ran 100 trials, with the same parameters, using the non-adversarial

streams from Section 3.5.4. In each trial, the entire stream was processed, and then we queried for

the frequency of every element in the stream, counting the number of estimates that raised the

flag. Over all 100 trials, or nearly 7.7 million estimates in total, only three flags were raised.

74

These initial findings suggest that the potential for CK to flag suspicious estimates may be of

significant benefit to systems employing compact frequency estimators.

75

CoverAttackUp,Qry (𝑥,⊥,⊥)

1 : cover← FindCoverUp,Qry (𝑥)
2 : until 𝑞𝑈 Up-queries made:
3 : for 𝑒 ∈ cover: Up(𝑒)
4 : return done

MinUncoverUp,Qry (𝑥, 𝑎′, cover)

1 : 𝑏′ ← −1
2 : while 𝑎′ ≠ 𝑏′

3 : if (𝑞𝑈 − |cover| + 1)Up-
4 : or 𝑞𝑄 Qry-queries made:
5 : return cover
6 : 𝑏′ ← 𝑎′

7 : for 𝑦 ∈ cover : Up(𝑦)
8 : 𝑎′ ← Qry(𝑥)
9 : return 𝑎′

FindCoverUp,Qry (𝑥)

1 : // find 1-cover for x

2 : cover← ∅
3 : found← False
4 : ®𝐼 ← ∅; 𝑎 ← Qry(𝑥)
5 : while not found
6 : if 𝑞𝑈 Up- or 𝑞𝑄 Qry-queries made
7 : return cover
8 : 𝑦 ←←U \ (®𝐼 ∪ {𝑥})
9 : ®𝐼 ← ®𝐼 ∪ {𝑦}

10 : Up(𝑦); 𝑎′ ← Qry(𝑥)
11 : if 𝑎′ ≠ 𝑎 :
12 : cover← {𝑦}
13 : found← True
14 : for 𝑖 ∈ [2, 3, . . . , 𝑘]𝑙𝑔 : 𝐶𝑀𝑆 : 𝐶𝐾 : 𝑐ℎ𝑎𝑛𝑔𝑒
15 : 𝑎 ← MinUncoverUp,Qry (𝑥, 𝑎′, cover)
16 : if 𝑎 = cover : return cover
17 : for 𝑦 ∈ I // in order of insertion to I

18 : if 𝑞𝑈 Up- or 𝑞𝑄 Qry-queries made
19 : return cover
20 : Up(𝑦); 𝑎′ ← Qry(𝑥)
21 : if 𝑎′ ≠ 𝑎 :
22 : cover← cover ∪ {𝑦}
23 : ®𝐼 ← I \ {𝑦}
24 : break
25 : return cover

Figure 3-5. Cover Set Attack for the CMS in private hash function and private representation setting. The
attack is parametrised with the update and query query budget 𝑞𝑈 and 𝑞𝑄.

76

CoverAttackUp (𝑥,⊥, repr)

1 : cover← FindCoverUp (1, 𝑥, repr)
2 : until 𝑞𝑈 Up-queries made:
3 : for 𝑒 ∈ cover: Up(𝑒)
4 : return done

FindCoverUp (𝑟, 𝑥, repr)

1 : cover← ∅; found← False
2 : I ← ∅; tracker← zeros(𝑘)
3 : repr′ ← Up(𝑥)
4 : // compute 𝑥’s indices

5 : for 𝑖 ∈ [𝑘]
6 : for 𝑗 ∈ [𝑚]
7 : if repr′ [𝑖] [𝑗] ≠ repr[𝑖] [𝑗]
8 : 𝑝𝑖 ← 𝑗 ; break;
9 : while not found

10 : if 𝑞𝑈 Up-queries made : return ∅
11 : 𝑦 ←←U \ (I ∪ {𝑥})
12 : I ← I ∪ {𝑦}
13 : repr← repr′

14 : repr′ ← Up(𝑦)
15 : // compute 𝑦’s indices

16 : for 𝑖 ∈ [𝑘]
17 : for 𝑗 ∈ [𝑚]
18 : if repr′ [𝑖] [𝑗] ≠ repr[𝑖] [𝑗]
19 : 𝑞𝑖 ← 𝑗 ; break;
20 : for 𝑖 ∈ [𝑘]
21 : // compare 𝑥’s and 𝑦’s indices row by row

22 : if 𝑝𝑖 = 𝑞𝑖 and tracker[𝑖] < 𝑟
23 : cover← cover ∪ {𝑦}
24 : tracker[𝑖] + = 1
25 : if sum(tracker) = 𝑟𝑘
26 : found← True
27 : return cover

Figure 3-6. Cover Set Attack for the CMS in private hash function and public representation setting. The
attack is parametrized with the update query budget 𝑞𝑈 .

77

CoverAttackHash,Up,Qry (𝑥, 𝐾, repr)

1 : cover← FindCoverHash (𝑥, 𝐾)
2 : 𝑡 ← Get-t(|cover|)
3 : for 𝑒 ∈ cover
4 : for 𝑖 ∈ [𝑡]: Up(𝑒)
5 : until 𝑞𝑈 Up-queries made:
6 : Up(𝑥)
7 : return done

Get-t()

1 : 𝑔(𝑡) ← log2(𝑘 · (𝑞𝑈)𝑡 𝑑𝑡 (𝑡+1)/2) − log2(𝑝)
2 : // find the roots of the negative quadratic polynomial g

3 : 𝑡1, 𝑡2 ← FindRootsOf(𝑔) // 𝑡1 ≤ 𝑡2
4 : // set 𝑡 so 𝑡 ≥ 1 and 𝑔 (𝑡) < 0

5 : if 𝑡1 > 1 or 𝑡2 < 1 : 𝑡 ← 1
6 : if 𝑡2 > 1 : 𝑡 ← ⌈𝑡2⌉
7 : if 𝑡2 = 1 : 𝑡 ← 2
8 : return 𝑡

FindCoverHash (𝑥, 𝐾)

1 : cover← {}; found← False
2 : I ← ∅; tracker← zeros(𝑘)
3 : // 𝑅 (𝐾, 𝑥) [𝑖]
4 : // = Hash (⟨“𝑐𝑡”, 𝑖, 𝐾, 𝑥⟩)

5 : (𝑝1, 𝑝2, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥)
6 : while not found
7 : if 𝑞𝐻 Hash-queries made
8 : return ∅
9 : 𝑦 ←←U \ (I ∪ {𝑥})

10 : I ← I ∪ {𝑦}
11 : (𝑞1, 𝑞2, . . . , 𝑞𝑘) ← 𝑅(𝐾, 𝑦)
12 : for 𝑖 ∈ [𝑘]
13 : if 𝑝𝑖 = 𝑞𝑖
14 : // remove duplicates

15 : cover[𝑖] ← 𝑦

16 : if tracker[𝑖] < 1
17 : tracker[𝑖] ← 1
18 : if sum(tracker) = 𝑘
19 : found← True
20 : // return the cover

21 : return cover.values()

Figure 3-7. Cover Set Attack for the HK in public hash function setting. We use 𝑅(𝐾, 𝑥) to mean
(Hash(⟨“𝑐𝑡”, 1, 𝐾, 𝑥⟩),Hash(⟨“𝑐𝑡”, 2, 𝐾, 𝑥⟩, . . . ,Hash(⟨“𝑐𝑡”, 𝑘, 𝐾, 𝑥⟩))). The attack is
parametrized with the update and Hash query budget 𝑞𝑈 and 𝑞𝐻 .

78

CoverAttackUp,Qry (𝑥,⊥,⊥)

1 : FindInsertCoverUp,Qry (𝑥)
2 : until 𝑞𝑈 Up-queries made:
3 : Up(𝑥)
4 : return done

ReintroUp,Qry (𝑥)

1 : // reintroduce target 𝑥

2 : while True
3 : if 𝑞𝑈 Up- or 𝑞𝑄 Qry-queries made:
4 : return
5 : Up(𝑥); 𝑎 ← Qry(𝑥)
6 : if 𝑎 > 0 : return
7 : endwhile
8 :

FindInsertCoverUp,Qry (𝑥)

1 : // insert ≤ 𝑘 elements 𝑡 times in a row

2 : cover← ∅
3 : 𝑡 ← Get-t()
4 : I ← ∅
5 : for 𝑖 ∈ [1, 2, . . . , 𝑘]
6 : ReintroUp,Qry (𝑥)
7 : while True
8 : if 𝑞𝑈 Up- or 𝑞𝑄 Qry-queries made
9 : return

10 : 𝑦 ←←U \ (I ∪ {𝑥})
11 : I ← I ∪ {𝑦}
12 : Up(𝑦); 𝑎 ← Qry(𝑥)
13 : if 𝑎 = 0 :
14 : cover← cover ∪ {𝑦}
15 : for 𝑗 ∈ [𝑡] : Up(𝑦)
16 : break
17 : return

Figure 3-8. Cover Set Attack for the HK in private hash function and representation setting. The attack is
parametrised with the update and query query budget 𝑞𝑈 and 𝑞𝑄. The attack uses the function
Get-t(.) from Figure 3-7.

79

CoverAttackUp,Qry (𝑥,⊥, repr)

1 : cover← FindCoverUp (𝑥, repr)
2 : 𝑡 ← Get-t()
3 : for 𝑒 ∈ cover
4 : for 𝑖 ∈ [𝑡]: Up(𝑒)
5 : until 𝑞𝑈 Up-queries made:
6 : Up(𝑥)
7 : return done

FindCoverUp (𝑥, repr)

1 : cover← {}; found← False
2 : I ← ∅; tracker← zeros(𝑘)
3 : repr′ ← Up(𝑥)
4 : // compute 𝑥’s indices

5 : for 𝑖 ∈ [𝑘]
6 : for 𝑗 ∈ [𝑚]
7 : if repr′ [𝑖] [𝑗] .fp ≠ repr[𝑖] [𝑗] .fp
8 : 𝑝𝑖 ← 𝑗 ; break;
9 : while not found

10 : if 𝑞𝑈 Up-queries made : return ∅
11 : 𝑦 ←←U \ (I ∪ {𝑥})
12 : I ← I ∪ {𝑦}
13 : repr← repr′

14 : repr′ ← Up(𝑦)
15 : // compute 𝑦’s indices

16 : for 𝑖 ∈ [𝑘]
17 : 𝑞𝑖 ← False
18 : for 𝑗 ∈ [𝑚]
19 : if repr′ [𝑖] [𝑗] .fp ≠ repr[𝑖] [𝑗] .fp
20 : 𝑞𝑖 ← 𝑗 ; break;
21 : for 𝑖 ∈ [𝑘]
22 : // compare 𝑥’s and 𝑦’s indices row by row

23 : if 𝑞𝑖 ≠ False and 𝑝𝑖 = 𝑞𝑖

24 : // remove duplicates

25 : cover[𝑖] ← 𝑦

26 : if tracker[𝑖] < 1
27 : tracker[𝑖] ← 1
28 : if sum(tracker) = 𝑘
29 : found← True
30 : // cover elements own the target’s counters

31 : return cover.values() // all counters set to 1

Figure 3-9. Cover Set Attack for the HK in private hash function and public representation setting. The
attack is parametrized with the update query budget 𝑞𝑈 . The attack uses the function Get-t(.)
from Figure 3-7.

80

Rep𝐾 (S)

1 : 𝑀 ← zeros(𝑘, 𝑚)
2 : for 𝑖 ∈ [𝑘]
3 : 𝐴[𝑖] ← [(★, 0)] × 𝑚
4 : repr← ⟨𝑀, 𝐴⟩
5 : for 𝑥 ∈ S
6 : repr←←Up𝐾 (repr, up𝑥)
7 : return repr

Up𝐾 (repr, up𝑥)

1 : ⟨𝑀, 𝐴⟩ ← repr
2 : 𝑀 ←← UpCMS

𝐾 (𝑀, up𝑥)
3 : 𝐴←← UpHK

𝐾 (𝐴, up𝑥)
4 : return repr←⟨𝑀, 𝐴⟩

Qry𝐾 (repr, qry𝑥)

1 : ⟨𝑀, 𝐴⟩ ← repr
2 : (𝑝1, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥), fp𝑥 ← 𝑇 (𝐾, 𝑥)
3 : Θ1,Θ2 ←∞
4 : // CMS only overestimates

5 : cntUB,𝑥 ← QryCMS
𝐾 (𝑀, qry𝑥)

6 : // HK only underestimates

7 : cntLB,𝑥 ← QryHK
𝐾 (𝐴, qry𝑥)

8 : // return upperbound if equal to lowerbound

9 : if cntUB,𝑥 = cntLB,𝑥

10 : return cntUB,𝑥

11 : for 𝑖 ∈ [𝑘]
12 : // if never observed

13 : if 𝐴[𝑖] [𝑝𝑖] .fp = ★

14 : cntUB,𝑥 ← 0
15 : return 0
16 : // upper bound adjustment

17 : // x does not own counter

18 : else if 𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑥

19 : Θ← 𝑀 [𝑖] [𝑝𝑖]−𝐴[𝑖] [𝑝𝑖] .cnt+1
2

20 : Θ1←min {Θ1,Θ}
21 : // x owns counter

22 : else if 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥

23 : Θ← 𝑀 [𝑖] [𝑝𝑖]+𝐴[𝑖] [𝑝𝑖] .cnt
2

24 : Θ2←min {Θ2,Θ}
25 : cntUB,𝑥← ⌊min {Θ1,Θ2}⌋
26 : return cntUB,𝑥

Figure 3-10. Keyed structure CK[𝑅,𝑇, 𝑚, 𝑘] supporting point-queries for any potential stream element 𝑥
(qry𝑥). QryCMS

𝐾 ,UpCMS
𝐾

, resp. QryHK
𝐾 ,UpHK

𝐾 , denote query and update algorithms of keyed
structure CMS[𝑅,𝑇, 𝑚, 𝑘] (Figure 3-2), resp. HK[𝑅,𝑇, 𝑚, 𝑘, 1] (Figure 3-3, but note 𝑑 = 1).
The parameters are a function 𝑅 : K × {0, 1}∗ → [𝑚]𝑘 , a function 𝑇 : K × {0, 1}∗ → {0, 1}𝑛
for some desired fingerprint length 𝑛, and integers 𝑚, 𝑘 ≥ 0. A concrete scheme is given by a
particular choice of parameters.

81

Kosarak stream Novel stream Retail stream

Figure 3-11. We plot the top 35% probability mass for each stream. That is the most frequent elements that
make up 35% of the total weight of the stream (i.e. the fewest number of elements in each
stream whose frequencies sum to such that when divided by the total length of the stream
equal 35%). The first vertical red line in each plot is the top 20% probability mass, the second
the top 25%, the third the top 30%, and the last the top 35%. From visual inspection we
decided to make the top-𝐾 cut-off at, 20 for Kosarak stream, 22 for the Novel stream, and 22
for the Retail stream.

CoverAttackHash,Up,Qry (𝑥, 𝐾, repr)

1 : cover←FindCoverHash (2, 𝑥, 𝐾)
2 : until 𝑞𝑈 Up-queries made:
3 : for 𝑒 ∈ cover: Up(𝑒)
4 : return done

FindCoverHash (𝑟, 𝑥, 𝐾)

1 : cover← ∅; found← False
2 : I ← ∅; tracker← zeros(𝑘)
3 : // 𝑅 (𝐾, 𝑥) [𝑖] = Hash (⟨𝑖, 𝐾, 𝑥⟩)

4 : (𝑝1, 𝑝2, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥)
5 : while not found
6 : if 𝑞𝐻 Hash-queries made
7 : return ∅
8 : 𝑦 ←←U \ (I ∪ {𝑥})
9 : I ← I ∪ {𝑦}

10 : (𝑞1, 𝑞2, . . . , 𝑞𝑘) ← 𝑅(𝐾, 𝑦)
11 : for 𝑖 ∈ [𝑘]
12 : if 𝑝𝑖 = 𝑞𝑖 and tracker[𝑖] < 𝑟
13 : cover← cover ∪ {𝑦}
14 : tracker[𝑖] + = 1
15 : if sum(tracker) = 𝑟𝑘
16 : found← True
17 : return cover

Figure 3-12. Cover Set Attack for the CK in public hash function setting. The attack is parametrized with
the update and Hash query budget 𝑞𝑈 and 𝑞𝐻 .

82

CoverAttackUp,Qry (𝑥,⊥,⊥)

1 : cover← FindCoverUp,Qry (𝑥)
2 : until 𝑞𝑈 Up-queries made:
3 : for 𝑒 ∈ cover: Up(𝑒)
4 : return done

MinUncoverUp,Qry (𝑥, 𝑎′, cover)

1 : 𝑏′ ← 𝑎′ − 1
2 : while 𝑎′ ≠ 𝑏′

3 : if (𝑞𝑈 − |cover| + 1)Up-
4 : or 𝑞𝑄 Qry-queries made:
5 : return cover
6 : 𝑏′ ← 𝑎′

7 : for 𝑦 ∈ cover : Up(𝑦)
8 : 𝑎′ ← Qry(𝑥)
9 : return 𝑎′

FindCoverUp,Qry (𝑥)

1 : // find 2- cover for x

2 : cover← ∅
3 : found← False
4 : I ← ∅; 𝑎 ← Qry(𝑥)
5 : while not found
6 : if 𝑞𝑈 Up- or 𝑞𝑄 Qry-queries made
7 : return cover
8 : 𝑦 ←←U \ (I ∪ {𝑥})
9 : I ← I ∪ {𝑦}

10 : Up(𝑦); 𝑎′ ← Qry(𝑥)
11 : if 𝑎′ ≠ 𝑎 :
12 : cover← {𝑦}
13 : found← True
14 : for 𝑖 ∈ [2, 3, . . . , 2 · 𝑘]
15 : 𝑎 ← MinUncoverUp,Qry (𝑥, 𝑎′, cover)
16 : if 𝑎 = cover : return cover
17 : for 𝑦 ∈ I // in order of insertion to I

18 : if 𝑞𝑈 Up- or 𝑞𝑄 Qry-queries made
19 : return cover
20 : Up(𝑦); 𝑎′ ← Qry(𝑥)
21 : if 𝑎′ ≠ 𝑎 :
22 : cover← cover ∪ {𝑦}
23 : I ← I \ {𝑦}
24 : break
25 : return cover // cover is inserted at least once

Figure 3-13. Cover Set Attack for the CK in private hash function and representation setting. The attack is
parametrized with the update query and query query budget – 𝑞𝑈 and 𝑞𝑄.

83

CoverAttackUp,Qry (𝑥,⊥, repr)

1 : cover← FindCoverUp (2, 𝑥, repr)
2 : until 𝑞𝑈 Up-queries made:
3 : for 𝑒 ∈ cover: Up(𝑒)
4 : return done

FindCoverUp (𝑟, 𝑥, repr)

1 : ⟨𝑀, 𝐴⟩ ← repr
2 : cover← ∅; found← False
3 : I ← ∅; tracker← zeros(𝑘)
4 : ⟨𝑀 ′, 𝐴′⟩ ← Up(𝑥)
5 : // compute 𝑥’s indices

6 : for 𝑖 ∈ [𝑘]
7 : for 𝑗 ∈ [𝑚]
8 : if 𝑀 ′ [𝑖] [𝑗] ≠ 𝑀 [𝑖] [𝑗]
9 : 𝑝𝑖 ← 𝑗 ; break;

10 : while not found
11 : if 𝑞𝑈 Up-queries made : return ∅
12 : 𝑦 ←←U \ (I ∪ {𝑥})
13 : I ← I ∪ {𝑦}
14 : ⟨𝑀, 𝐴⟩ ← ⟨𝑀 ′, 𝐴′⟩
15 : ⟨𝑀 ′, 𝐴′⟩ ← Up(𝑦)
16 : // compute 𝑦’s indices

17 : for 𝑖 ∈ [𝑘]
18 : for 𝑗 ∈ [𝑚]
19 : if 𝑀 ′ [𝑖] [𝑗] ≠ 𝑀 [𝑖] [𝑗]
20 : 𝑞𝑖 ← 𝑗 ; break;
21 : for 𝑖 ∈ [𝑘]
22 : // compare 𝑥’s and 𝑦’s indices row by row

23 : if 𝑝𝑖 = 𝑞𝑖 and tracker[𝑖] < 𝑟
24 : cover← cover ∪ {𝑦}
25 : tracker[𝑖] + = 1
26 : if sum(tracker) = 𝑟𝑘
27 : found← True
28 : return cover

Figure 3-14. Cover Set Attack for the CK in private hash function and public representation setting. The
attack is parametrized with the update query budget 𝑞𝑈 .

84

Rep𝐾 (S)

1 : 𝑀 ← zeros(𝑘, 𝑚)
2 : for 𝑖 ∈ [𝑘]
3 : 𝐴[𝑖] ← [(★, 0)] × 𝑚
4 : repr← ⟨𝑀, 𝐴⟩
5 : for 𝑥 ∈ S
6 : repr←←Up𝐾 (repr, up𝑥)
7 : return repr

Up𝐾 (repr, up𝑥)

1 : ⟨𝑀, 𝐴⟩ ← repr
2 : 𝑀 ←← UpCMS

𝐾 (𝑀, up𝑥)
3 : 𝐴←← UpHK

𝐾 (𝐴, up𝑥)
4 : return repr←⟨𝑀, 𝐴⟩

Qry𝐾 (repr, qry𝑥)

1 : ⟨𝑀, 𝐴⟩ ← repr
2 : (𝑝1, . . . , 𝑝𝑘) ← 𝑅(𝐾, 𝑥), fp𝑥 ← 𝑇 (𝐾, 𝑥)
3 : Θ1,Θ2,Δ←∞
4 : flag← False

5 : 𝑁 ←
𝑚∑︁
𝑗=1

𝑀 [1] [𝑗]

6 : cntUB,𝑥 ← QryCMS𝐾 (𝑀, qry𝑥)
7 : cntLB,𝑥 ← QryHK

𝐾 (𝐴, qry𝑥)
8 : if cntUB,𝑥 = cntLB,𝑥

9 : return cntUB,𝑥 , flag
10 : for 𝑖 ∈ [𝑘]
11 : if 𝐴[𝑖] [𝑝𝑖] .fp = ★

12 : cntUB,𝑥 ← 0
13 : return 0, flag
14 : else if 𝐴[𝑖] [𝑝𝑖] .fp ≠ fp𝑥

15 : Θ← 𝑀 [𝑖] [𝑝𝑖]−𝐴[𝑖] [𝑝𝑖] .cnt+1
2

16 : Θ1←min {Θ1,Θ}

17 : Δ̂← 𝑀 [𝑖] [𝑝𝑖]−𝐴[𝑖] [𝑝𝑖] .cnt+1
2

18 : Δ←min
{
Δ, Δ̂

}
19 : else if 𝐴[𝑖] [𝑝𝑖] .fp = fp𝑥

20 : Θ← 𝑀 [𝑖] [𝑝𝑖]+𝐴[𝑖] [𝑝𝑖] .cnt
2

21 : Θ2←min {Θ2,Θ}

22 : Δ̂← 𝑀 [𝑖] [𝑝𝑖]−𝐴[𝑖] [𝑝𝑖] .cnt
2

23 : Δ←min
{
Δ, Δ̂

}
24 : cntUB,𝑥← ⌊min {Θ1,Θ2}⌋
25 : if Δ ≥ 𝜓𝑁
26 : flag← True
27 : return cntUB,𝑥 , flag

Figure 3-15. Keyed structure CK[𝑅,𝑇, 𝑚, 𝑘, 𝜓] supporting point-queries for any potential stream element 𝑥
(qry𝑥) and the ability to raise a flag on “bad” frequency estimation. QryCMS

𝐾 ,UpCMS
𝐾

, resp.
QryHK

𝐾 ,UpHK
𝐾 , denote query and update algorithms of keyed structure CMS[𝑅,𝑇, 𝑚, 𝑘]

(Figure 3-2), resp. HK[𝑅,𝑇, 𝑚, 𝑘, 1] (Figure 3-3). The parameters are a function
𝑅 : K × {0, 1}∗ → [𝑚]𝑘 , a function 𝑇 : K × {0, 1}∗ → {0, 1}𝑛 for some desired fingerprint
length 𝑛, integers 𝑚, 𝑘 ≥ 0, and flag parameter 𝜓 ∈ (0, 1). A concrete scheme is given by a
particular choice of parameters.

85

CHAPTER 4
COMPACT PROBABILISTIC DATA STRUCTURES IN THE WILD: A SECURITY

ANALYSIS OF REDIS

As we have seen, compact probabilistic data structures are becoming ubiquitous in modern

computing applications that deal with large amounts of data, especially when the data is presented

as a stream. Many modern data warehousing and processing systems provide access to CPDS as

part of their functionality. A prominent example of such a system is Redis, a general purpose,

in-memory database. Redis is integrated into general data analytics and computing platforms

offered by AWS, Google Cloud, IBM Cloud, and Microsoft Azure, amongst others. Redis

supports a variety of CPDS: HyperLogLog (HLL), Bloom filter, Cuckoo filter, t-digest, Top-K,

and count-min sketch [63]. While Redis was mostly used as a cache in the past, it is now a fully

general system, used by a companies like Adobe [64], Microsoft [65], Facebook [66] and

Verizon [67] for a variety of purposes. These include security-related applications, such as traffic

analysis and intrusion detection systems [68].

As the functionality of Redis has broadened, so has its maturity with respect to security.

Initially, the Redis developers stated that no security should be expected from Redis: The Redis

security model is: “it’s totally insecure to let untrusted clients access the system, please protect it

from the outside world yourself” [69]. In reality, users failed to comply with this [70]. Today,

Redis has a number of security features, and has adopted a different model, with a protected mode

as default, user authentication, use of TLS, and command block-listing amongst other

features [71]. Redis now also recognize security and performance in the face of

adversarially-chosen inputs as being a valid concern, stating that “an attacker might insert data

into Redis that triggers pathological (worst case) algorithm complexity on data structures

implemented inside Redis internals” and then going on to discuss two potential issues, namely

hash table exhaustion and worst-case sorting behavior triggered by crafted inputs [71]. The first

issue is prevented in Redis by using hash function seeding; the second issue is not currently

addressed. However, Redis’ consideration of malicious inputs does not seem to extend to their

CPDS implementations.

86

Given its prominence in the marketplace and the many other systems that rely on it, we

contend that the CPDS used in Redis are deserving of detailed analysis. Moreover, in view of the

broad set of use cases for these CPDS, including those where adversarial interference is

anticipated and would be damaging if successful, this analysis should be done in an adversarial

setting. This approach follows a line of recent work on CPDS analysis [72, 8, 73, 74, 11, 75]. In

this paper, we make a comprehensive security analysis of the suite of CPDS provided by Redis,

with a view to understanding how its constituent CPDS perform in adversarial settings. As argued

in [76], we regard the observation, documentation, and analysis of such security phenomena “in

the wild” as constituting scientific contributions in their own right.

Following prior work, we assume only that the adversary has access to the functionality

provided by the CPDS (eg. via the presented API). The adversary’s aim is then to subvert the

main goal of the specific CPDS under study. We deliberately remain agnostic about precisely

which application is running on top of Redis, since the relevant applications will change over time

and are anyway largely proprietary. The real-world effects of a successful attack will vary across

applications, but might include, for example, false statistical information being presented to users

(in the case of frequency estimation), wrongly reporting the presence of certain data items in a

cache (in the case of Bloom filters or Cuckoo filters) leading to performance degradation, or the

evasion of network attack detection (in the case of cardinality estimation being used in network

applications). Instead of making application-specific analyses, we focus on the core CPDS

functionalities in Redis and how their goals can be subverted in general. Naturally, our analyses

are specific to each of the different CPDS supported in Redis, and depend on various low-level

implementation choices made by Redis. These choices lead us to develop novel attacks that are

more powerful than the known generic attacks against the different CPDS in Redis.

Since HLL in Redis was already comprehensively studied in [11], we do not consider it

further here. We note only that [11] showed how to manipulate data input to Redis HLL to distort

cardinality estimates in severe ways, in a variety of adversarial settings. The t-digest is a data

structure first introduced in [77]; it uses a k-means clustering technique [78] to estimate

87

percentiles over a collection of measurements. The structure is an outlier in the Redis CPDS suite

as it does not work in the streaming setting, but necessitates the batching of data in memory, and it

is not really probabilistic in the same sense as the other CPDS in Redis (in particular it does not

employ the “hash functions mapping to array positions” paradigm that the other CPDS in Redis

use). For these reasons, we omit a security evaluation of t-digest (both in general and in the case

of the Redis implementation).

This leads us to focus on the remaining four CPDS in Redis: Bloom filter, Cuckoo filter,

Top-K, and count-min sketch. For each CPDS, we discuss how the CPDS was originally

described in the literature and lay out how the Redis implementation differs from this “theoretical”

description. We then develop attacks for each of these four PDS, with the attacks in most cases

exploiting specific features of the Redis implementations and being more efficient for this reason

(simultaneously, we have to deal with the many oddities of the Redis codebase in our attacks). In

total, we present 10 different attacks across the four CPDS. We compare our attacks with known

attacks for these CPDS from the literature. We also look at how the CPDS in Redis can be

protected against attacks, drawing on existing literature that considers this question for CPDS more

generally [8, 24, 11, 75]. For the purposes of this work, we provide the structural descriptions and

attacks for the compact frequency estimators implemented in Redis (Top-K and count-min

sketch). Recall, that in Chapter 3 we saw that count-min sketch and HeavyKeeper (called Top-K

in Redis) are susceptible to devastating attacks in even limited adversarial settings. In this chapter

we demonstrate how these attacks are augmented by the specific implementation choices that

Redis makes.Full details on the Bloom filter and Cuckoo filter are available in the full paper [79].

Further, we notified Redis of our findings on 29.04.2024. The full version of our paper [79]

is identical to the document we sent to Redis on 29.04.2024 aside from changes made in this

subsection. We offered to engage in a coordinated approach to vulnerability disclosure and

suggested a 90-day period before any public distribution of our research paper. Redis

acknowledged our findings immediately and then gave a detailed response on 16.05.2024. In this

response, Redis disputed the validity of analyzing Redis’ CPDS in adversarial settings; naturally

88

we disagree with their viewpoint. However, they also committed to consider changes to their

implementation in future versions, including using random seeds instead of fixed seeds,

considering alternative hash functions, and adding disclaimers to their documentation. They did

not commit to a timeline for this consideration. They decided not to handle our disclosure as a

“Redis vulnerability”.

4.1 PDS in Redis

We start by (re)introducing theC PDS that we consider in this chapter – the count-min sketch

and the Top-K (HeavyKeeper). We will describe their original specification, the probabilistic

guarantees they provide, and give a detailed description of their Redis implementation. We depart

from our use of the generic data structure’s syntax of [8], instead using an ad-hoc syntax that

better matches how the structures are defined and implemented in Redis.

4.1.1 Count-min Sketch

CMS.setup(𝑝𝑝)

1 : 𝜀, 𝛿← 𝑝𝑝

2 : 𝑚 ←
⌈ 𝑒
𝜀

⌉
3 : 𝑘 ←

⌈
ln(1
𝛿
)
⌉

4 : ℎ(◦) ← MurmurHash2(◦) mod 𝑚
5 : 𝜎 ← zeros(𝑘, 𝑚)
6 : return ⊤

CMS.ins(𝑥, 𝜎, 𝑣)

1 : (𝑝1, . . . , 𝑝𝑘) ← ℎ(𝑥, 1), . . . , ℎ(𝑥, 𝑘)
2 : for 𝑖 ∈ [𝑘]
3 : 𝜎[𝑖] [𝑝𝑖]+ = 𝑣
4 : return min𝑖∈[𝑘]{𝜎[𝑖] [𝑝𝑖]}

CMS.qry(𝑥, 𝜎)

1 : (𝑝1, . . . , 𝑝𝑘) ← ℎ(𝑥, 1), . . . , ℎ(𝑥, 𝑘)
2 : return min𝑖∈[𝑘]{𝜎[𝑖] [𝑝𝑖]}

Figure 4-1. Redis count-min sketch algorithms. The analogous functions in the Redis API are: CMS.setup
is CMS.INITBYPROB, CMS.ins is CMS.INCRBY, and CMS.qry is CMS.QUERY. We
refer to a Redis count-min sketch initialized with 𝜀, 𝛿 ∈ (0, 1) as CMS[𝜀, 𝛿].

A count-min sketch supports frequency estimates, i.e. estimates of the number of times a

particular element occurs in a data set. Originally introduced in [23], a count-min sketch consists

of a 𝑘 × 𝑚 array 𝜎 of (initially zero) counters, and 𝑘 pairwise independent hash functions

ℎ1, ..., ℎ𝑘 that map between the universeU of data items and [𝑚].

89

An element 𝑥 is added to a count-min sketch by computing

(𝑝1, 𝑝2, . . . , 𝑝𝑘) ← ℎ(𝑥, 1), . . . , ℎ(𝑥, 𝑘), then adding 1 to each of the counters at 𝜎[𝑖] [𝑝𝑖] for

𝑖 ∈ [𝑘]. This extends in the obvious way to insertions of 𝑣 instances of an element at a time. A

frequency estimate for 𝑥 is computed as 𝑛̂𝑥 = min𝑖∈[𝑘]{𝜎[𝑖] [𝑝𝑖]}. A count-min sketch may

produce overestimates of the true frequency, but never underestimates.

For any 𝜀, 𝛿 ≥ 0, any 𝑥∈U, and any collection of data C stored by the count-min sketch

(overU) of length 𝑁 , it can be guaranteed by appropriate setting of parameters that

Pr[𝑛̂𝑥 − 𝑛𝑥 > 𝜀𝑁] ≤ 𝛿, where 𝑛𝑥 is the true frequency of 𝑥. Specifically, we can take 𝑚 ← ⌈𝑒/𝜀⌉,

𝑘 ← ⌈ln (1/𝛿)⌉. This correctness bound holds when the individual hash functions are sampled

from a pairwise-independent hash family 𝐻 (see [23] for a proof). It further assumes that

insertions are done in the honest setting. That is, C and the queried element 𝑥 are independent of

the internal randomness of the structure (the random choice of the hash functions).

In Redis, a count-min sketch is initialized by the user calling CMS.setup(𝜀, 𝛿). We will

refer to the resulting sketch as CMS[𝜀, 𝛿]. The dimensions 𝑚, 𝑘 of the count-min sketch are then

calculated as above, and a 𝑘 × 𝑚 array of zeros is initialized. We note that it is also possible to

initialize the structure from the dimensional parameters 𝑚, 𝑘 , rather than deriving them from 𝜀, 𝛿.

Insertions and membership queries on any element 𝑥 are carried out in the same way as in the

original structure, using the commands CMS.ins(𝑥, 𝜎, 𝑣) and CMS.qry(𝑥, 𝜎); both return the

frequency estimate of 𝑥. The analogous functions in Redis are called CMS.INITBYPROB,

CMS.INCRBY and CMS.QUERY, respectively.

To instantiate the 𝑘 pairwise independent hash functions, Redis uses MurmurHash2 with a

per row seed equal to the row index, i.e. ℎ1(𝑥) ← ℎ(𝑥, 1), ..., ℎ𝑘 (𝑥) ← ℎ(𝑥, 𝑘), where the

syntax ℎ(𝑥, 𝑖) means MurmurHash2 evaluated on input 𝑥 with seed 𝑖. For full details of count-min

sketches in Redis, see Figure 4-1.

We point out that using fixed hash functions violates the honest setting assumptions that are

required for the guarantees on frequency estimation errors in [23]. We will leverage this and the

properties of MurmurHash2 in our attacks to cause large frequency overestimates.

90

4.1.2 Top-K

TK.setup(𝑝𝑝)

1 : 𝑚, 𝑘, decay, 𝐾 ← 𝑝𝑝

2 : seed← 1919
3 : ℎ(◦) ← MurmurHash2(◦) mod 𝑚
4 : ℎfp ← MurmurHash2(◦)
5 : for 𝑖 ∈ [𝑘]
6 : 𝜎[𝑖] ← [(★, 0)] × 𝑚
7 : 𝐻 ← initminheap(𝐾)
8 : return ⊤

TK.qry(𝑥, 𝜎)

1 : (𝑝1, . . . , 𝑝𝑘) ← ℎ(𝑥, 1), . . . , ℎ(𝑥, 𝑘)
2 : fp𝑥 ← ℎfp(𝑥, seed)
3 : cnt𝑥 ← 0
4 : for 𝑖 ∈ [𝑘]
5 : if 𝜎[𝑖] [𝑝𝑖] .fp = fp𝑥
6 : cnt←𝜎[𝑖] [𝑝𝑖] .cnt
7 : cnt𝑥←max {cnt𝑥 , cnt}
8 : return cnt𝑥

TK.list(𝜎)

1 : 𝑇 ← 𝐻.list()
2 : return 𝑇

TK.ins(𝑥, 𝜎)

1 : 𝑟 ← nil
2 : (𝑝1, . . . , 𝑝𝑘) ← ℎ(𝑥, 1), . . . , ℎ(𝑥, 𝑘)
3 : fp𝑥 ← ℎfp(𝑥, seed)
4 : cnt𝑥 ← 0
5 : for 𝑖 ∈ [𝑘]
6 : if 𝜎[𝑖] [𝑝𝑖] .fp ∉{fp𝑥 , ★}
7 : 𝑟 ←← [0, 1)
8 : if 𝑟 ≤ decay𝜎 [𝑖] [𝑝𝑖].cnt

9 : 𝜎[𝑖] [𝑝𝑖] .cnt−= 1
10 : if 𝜎[𝑖] [𝑝𝑖] .cnt = 0
11 : 𝜎[𝑖] [𝑝𝑖] .fp← fp𝑥
12 : if 𝜎[𝑖] [𝑝𝑖] .fp = fp𝑥
13 : 𝜎[𝑖] [𝑝𝑖] .cnt+= 1
14 : if 𝜎[𝑖] [𝑝𝑖] .cnt > cnt𝑥
15 : cnt𝑥 ← 𝜎[𝑖] [𝑝𝑖] .cnt
16 : if cnt𝑥 ∈ 𝐻
17 : 𝐻.update(𝑥, cnt𝑥)
18 : elseif cnt𝑥 > 𝐻.getmin()
19 : 𝑟 ← 𝐻.getmin()
20 : 𝐻.poppush(𝑥, cnt𝑥)
21 : return 𝑟

Figure 4-2. Redis Top-K structure algorithms. The analogous functions in the Redis API are: TK.setup is
TOPK.RESERVE, TK.ins is TOPK.ADD, TK.qry is TOPK.COUNT, and TK.list is
TOPK.LIST. We refer to a Redis Top-K structure initialized with 𝑝𝑝 = 𝑚, 𝑘, decay, 𝐾 as
TK[𝑚, 𝑘, decay, 𝐾].

A Top-K structure, originally introduced as the HeavyKeeper in [47], solves the

approximate top-𝐾 problem.

The exact version of the problem is defined as follows: given elements of a data

collection C ⊆ {𝑒1, 𝑒2, ..., 𝑒𝑚} with associated frequencies (𝑛𝑒1 , 𝑛𝑒2 , ..., 𝑛𝑒𝑚), we can order the

elements {𝑒∗1, 𝑒
∗
2, ..., 𝑒

∗
𝑀
} such that (𝑛∗𝑒1 ≥ 𝑛

∗
𝑒2 ≥ ... ≥ 𝑛

∗
𝑒𝑀
). Then, for some 𝐾 ∈ Z+, we output the

set of elements {𝑒∗1, 𝑒
∗
2, ..., 𝑒

∗
𝐾
} with the 𝐾 largest frequencies (𝑛∗𝑒1 ≥ 𝑛

∗
𝑒2 ≥ ... ≥ 𝑛

∗
𝑒𝐾
). Given

91

space linear in the stream this is trivial to solve exactly. However, by the pigeonhole principle, it is

not possible to find an exact solution with space less than linear (see [60] for a formal

impossibility argument). A common technique is to place a small data structure of size 𝑂 (𝐾), like

a heap or list, on top of a compact frequency estimator. By updating this small structure at most

once upon an insertion of each element, we can approximate this top-𝐾 set [52, 54]. Using this

technique we will obtain the 𝐾 elements with the largest estimated frequencies.

The Top-K structure is represented by a 𝑘×𝑚 matrix 𝜎. Each entry in 𝜎 is an (fp, cnt) pair,

where fp is a fingerprint of the element that “owns” the counter, and cnt is said element’s recorded

count. These entry pairs are initialized to the distinguished symbol ★ and zero, respectively.

Associated with each row is a hash function that maps elements inU to [𝑚], i.e. 𝑘 hash functions

ℎ1, ..., ℎ𝑘 . The fingerprint hash function ℎfp maps elements inU to {0, 1}𝜆fp , for some desired

fingerprint length 𝜆fp. Further, we initialize a min-heap 𝐻 of maximal size 𝐾 to store the elements

with the 𝐾 largest estimated frequencies. Lastly, a decay value is set, which is used to decrement a

counter when a specific condition is hit.

To insert an element 𝑥, we start by computing (𝑝1, ..., 𝑝𝑘) ← (ℎ1(𝑥), . . . , ℎ𝑘 (𝑥)). We then

compute the fingerprint fp𝑥 associated with the element 𝑥 as ℎfp(𝑥). We also set a

variable cnt𝑥 ← 0. We then go row by row (indexed by 𝑖 ∈ [𝑘]), with the following cases:

1. if fp∗ = ★, where fp∗ is the current fingerprint value at matrix position (𝑖, 𝑝𝑖), then we set

the counter value to 1, the fingerprint to fp𝑥 , and if cnt𝑥 < 1 : cnt𝑥 ← 1.

2. else if fp𝑥 = fp∗, we add 1 to the counter value, and if cnt𝑥 < 𝑐 : cnt𝑥 ← 𝑐, where 𝑐 is the

current counter value at matrix position (𝑖, 𝑝𝑖).

3. else we select a random value 𝑟 ←← [0, 1). If 𝑟 < decay𝑐, where 𝑐 is the current counter

value at matrix position (𝑖, 𝑝𝑖), we decrement the counter value stored at this position. If,

after decrementing, this value is 0, we then set the counter value to 1, the fingerprint to fp𝑥 ,

and if cnt𝑥 < 1 : cnt𝑥 ← 1. This is the so-called probabilistic decay process.

92

If, after this procedure, it is such that 𝑥 ∈ 𝐻, we update the entry in the heap based on the

current value of cnt𝑥 . Else, we check that cnt𝑥 > 𝐻.min, and if so we remove the min entry in 𝐻

and replace it with (𝑥, cnt𝑥). This ensures that we are keeping an accurate account of the 𝐾

highest estimated frequencies in 𝐻.

Top-K provides approximate answers to frequency queries for any element 𝑥, by computing

(𝑝1, . . . , 𝑝𝑘) ← (ℎ1(𝑥), . . . , ℎ𝑘 (𝑥)) and fp𝑥 ← ℎfp(𝑥), and returning 𝑛̂𝑥 = max𝑖∈[𝑘]{𝜎[𝑖] [𝑝𝑖]}

where 𝜎[𝑖] [𝑝𝑖] .fp = fp𝑥 . If none of the fingerprints in this set of buckets equals fp𝑥 , then 0 is

returned. Top-K returns the estimated top-𝐾 elements by returning all the pairs of items and

estimated counts stored in 𝐻.

In [47], a probabilistic guarantee for estimation error magnitude is presented, assuming that

each 𝜎[𝑖] [𝑗] has a sole owner throughout the processing of the entire stream. However, the

statement lacks precision, and its proof is flawed, thus we will not restate it (see instead [75] for a

meaningful result). Moreover, the results in [47] rely on a no-fingerprint collision (NFC)

assumption, ensuring that all frequency estimates satisfy 𝑛̂𝑥 ≤ 𝑛𝑥 , where 𝑛𝑥 is the true frequency

of 𝑥, i.e. Top-K strictly underestimates frequencies. While not formally defined in the original

paper, a rigorous definition is given in [75], characterizing NFC as the assumption that elements

hashing to the same row position in any row do not share a fingerprint. This assumption is

reasonable for practical sizes ofU and a sufficiently large fingerprint space.

To initialize a Top-K structure in Redis, the user specifies 𝑘, 𝑚, decay, and 𝐾 , by calling

TK.setup(𝑘, 𝑚, decay, 𝐾). (The analogous function in Redis is called TOPK.RESERVE.) We

refer to the resulting structure as TK[𝑘, 𝑚, decay, 𝐾]. The hash functions for each row are again

computed as ℎ1(𝑥) ← ℎ(𝑥, 1), ..., ℎ𝑘 (𝑥) ← ℎ(𝑥, 𝑘), with ℎ set to MurmurHash2 mod 𝑚. The

fingerprint hash function is computed as ℎfp ← ℎ(𝑥, seed), with ℎfp set to MurmurHash2

(𝜆fp = 32) with a fixed seed = 1919. The decay value is by default set to 0.9.

Insertions and frequency queries on an element 𝑥 then proceed as described above, through

the TK.ins(𝑥, 𝜎) and TK.qry(𝑥, 𝜎) functionalities. Similar to the count-min sketch, multiple

instances of an element can be added to the Top-K, however this is implemented through repeated

93

invocations of the insert algorithm described above. To return the top-𝐾 elements, one invokes

TK.list(𝜎). (The analogous functions in Redis are called TOPK.ADD, TOPK.COUNT and

TOPK.LIST, respectively.) For full details of the Redis Top-K structure, see Figure 4-2.

We will show that the specific implementation choices that Redis makes leads to security

issues. Specifically, we give attacks that block the true 𝐾 most frequent elements from being

reported in the top-𝐾 estimation (with overwhelming probability) whether or not these elements

are known to the attacker before the attack. Further, we show that one is able to trivially violate

the NFC assumption and cause the Redis Top-K structure to allow for frequency overestimates.

4.2 Attacks Against PDS in Redis

In this section, we construct attacks against the Redis implementations of count-min

sketches and Top-K structures (for attacks against Bloom filters and Cuckoo filters see [79]).

While our attacks vary in their goals and complexity, at their core, they all exploit Redis’ choice of

weak hash functions (from the MurmurHash family) and their invertibility. By implementing our

attacks and giving experimental results, we demonstrate that malicious Redis users can severely

disrupt the performance of each PDS. Code for our attacks can be found at [80].

4.2.1 MurmurHash Inversion Attacks

The Redis PDS suite relies heavily on two different MurmurHash hash functions:

MurmurHash64A and MurmurHash2. Both functions accept an element, a length parameter and a

seed as input. The functions have, respectively, 64-bit and 32-bit outputs. In Redis, all inputs must

have valid ASCII encoding, as the length field is set to the character length of the string

representation of the input. Seeds are usually set to fixed values.

The MurmurHash family of hash functions are designed to be fast but are not

cryptographically secure. Indeed, starting with a target hash value ℎ and a given seed, it is easy to

find one or many elements that hash to ℎ under either MurmurHash64A or MurmurHash2, so

these functions are not even one-way. We refer to these resulting elements as pre-images of ℎ, and

the algorithms that compute them as inversion algorithms. Our inversion algorithms for

MurmurHash64A and MurmurHash2 are about as fast as computing the hash functions in the

94

forward direction. They are based on the deterministic approach in [81]. However, we adapt this

method to make our algorithms randomized and to be able to produce many pre-images for the

same target hash value ℎ. For MurmurHash64A, our inversion algorithm outputs strings

consisting of two 64-bit blocks 𝐵1, 𝐵2 in which 𝐵2 is chosen arbitrarily and 𝐵1 is then determined

by 𝐵2 and the seed. Similarly, for MurmurHash2, but with 32-bit blocks. In both cases, the

algorithms can be modified to produce inversions that are 𝑡-block messages for any 𝑡; then any

𝑡 − 1 of the blocks can be freely chosen (with the remaining one then being determined). However,

pre-images that comprise two 64-bit or 32-bit blocks suffice for our attacks.

For attacks on Redis, we must also further modify our algorithms to ensure the pre-images

are valid ASCII-encoded strings. Meeting this additional requirement incurs extra cost. For

MurmurHash64A, given a valid ASCII-encoded 𝐵2, ensuring that 𝐵1 has the correct format

requires on average 28 trial inversions, hence costing roughly the same as 256 forward hash

function computations. Here, the factor of 28 comes from a 64-bit string representing 8 ASCII

characters, each of which must have a single bit set to zero. For MurmurHash2, an average of 16

trial inversions is needed to obtain a 2-block pre-image respecting the ASCII constraint.

Additionally, we enforce the leading byte of 𝐵1 to be non-zero to ensure that the length of the

pre-image, when viewed as a string, is exactly 16 or 8 bytes. This is important as

MurmurHash64A and MurmurHash2 outputs depend on the input length. Overall, this results in

an average number of an equivalent of 256 · 128
127 ≈ 258 and 16 · 128

127 ≈ 16 hash function calls to

compute a correctly formatted 2-block pre-image for MurmurHash64A and MurmurHash2.

It is also possible to construct so-called universal multi-collisions for certain hash functions

in the MurmurHash family [82]. These are large sets of input values that all hash to the same

output, irrespective of the seed. For MurmurHash64A, such inputs could be useful in our targeted

false positive attack on Redis’ Bloom filter below; however, they seem to be difficult to construct

while respecting the ASCII encoding requirement. We leave the construction and exploitation of

such collisions to future work.

95

4.2.2 Count-Min Sketch Attack

We give an attack against Count-Min sketches in Redis that causes large frequency

overestimates for any target element.

4.2.2.1 Overestimation attack

Consider a Count-Min sketch with parameters 𝜀, 𝛿. After initializing CMS[𝜀, 𝛿] 𝜎, an

adversary A is given access to insertion and query oracles: Ins(·) := CMS.ins(·, 𝜎) and

Qry(·) := CMS.qry(·, 𝜎). In a frequency overestimation attack, the adversary is given a target

element 𝑥 as input and is challenged with causing the frequency of 𝑥 to be overestimated. A

metric for the adversary’s success is the value CMS.qry(𝑥, 𝜎) − 𝑛𝑥 , where 𝑛𝑥 is the number of

times 𝑥 was actually inserted into the Count-Min sketch.

We begin by recalling that, for a frequency estimation query on an element 𝑥 ∈ U, the

response given by a Count-Min sketch has one-sided error, i.e. it only overestimates. In the honest

setting, this error can be bounded according to the number of items inserted into the structure and

the parameters of the structure (see Section 4.1.1). We will show that in an adversarial setting, we

can exploit knowledge of the internal randomness of the structure to cause the sketch to make

massive overestimates of the frequency of a target element 𝑥.

In Section 3.4.2 we present attacks against the general CMS structure. We could directly

apply their “public hash” attack to the Redis implementation of the Count-Min sketch, as the seeds

used for each row hash function are hard-coded. However, Redis’ choice to use MurmurHash2 for

row position hash functions allows us to exploit the invertibility of the function to speed up the

attack. As MurmurHash2 is invertible, we can generate an arbitrary number of multicollisions for

a fixed hash output and seed. This allows us to carry out the attack more efficiently.

To create an overestimation error on 𝑥, one must find a cover for 𝑥, which (with respect to

the parameters of a given Count-Min sketch) is a set of elements {𝑦1,...,𝑦𝑘 } such that

∀𝑖∈[𝑘]:ℎ(𝑥, 𝑖)=ℎ(𝑦𝑖, 𝑖) and ∀𝑖∈[𝑘]:𝑦𝑖≠𝑥. We use the fact that MurmurHash2 is invertible to find

our cover. Let 𝑝𝑖 denote ℎ𝑖 (𝑥) for 𝑖 ∈ [𝑘], where ℎ𝑖 (·) is instantiated using MurmurHash2(·, 𝑖) as

in Redis. We then set 𝑦𝑖 by inverting MurmurHash2(·, 𝑖) at 𝑥 for 𝑖 ∈ [𝑘]. Respecting Redis’

96

overestimation attackIns(𝑥, 𝑝𝑝, 𝐼)

1 : cover← find cover(𝑥, 𝑝𝑝)
2 : until 𝐼 insertions are made
3 : for 𝑒 ∈ cover: Ins(𝑒)
4 : return done

find cover(𝑥, 𝑝𝑝)

1 : 𝜀, 𝛿← 𝑝𝑝

2 : 𝑘 ←
⌈
𝑙𝑛(1

𝛿
)
⌉

3 : cover← ∅
4 : (𝑝1, . . . , 𝑝𝑘) ← ℎ(𝑥, 1), . . . , ℎ(𝑥, 𝑘)
5 : for 𝑖 ∈ [𝑘]
6 : 𝑦 ← MurmurHash2Inverse(𝑝𝑖 , 𝑖)
7 : cover← cover ∪ {𝑦}
8 : return cover

Figure 4-3. The count-min sketch overestimation attack. We use the invertibility of MurmurHash2 to find a
cover. We then repeatedly insert the cover to create error. Note that we abuse notation and
assume that MurmurHash2Inverse is run until a validly encoded pre-image is found.

ASCII encoding constraint, we expect this to cost an equivalent of about 16 hash function

evaluations for each 𝑖 (as per Section 4.2.1). Therefore, we expect a total cost of about 16𝑘

MurmurHash2 computations. Once the cover is found, we simply repeatedly insert it, using Ins

calls on 𝑦𝑖 for 𝑖 ∈ [𝑘]. Since we never insert 𝑥 and our covers are always of size 𝑘 , after 𝐼

insertions we observe an error on 𝑥 equal to ⌊ 𝐼
𝑘
⌋, i.e. CMS.qry(𝑥, 𝜎)−𝑛𝑥 ≥ ⌊ 𝐼𝑘 ⌋. For a full

description of our attack, see Figure 4-3.

We remark that the attack also works against structures that already have elements stored in

them., as the Count-Min sketch is a linear structure.

We implemented the attack and measured the computation needed for a variety of 𝜀, 𝛿. We

compare the error to the forward hash computation based attack of [75] given in Section 3.4.2

with the one we present here. The results are summarized in Table 4-1. As we can see our

experimental results tightly match our analysis, and our attack is at least an order of magnitude

less expensive than previous best attack in [75]. Further, to verify the correctness of our attack we

97

Table 4-1. Experimental number (average over 100 trials) of equivalent MurmurHash2 calls needed to find
a cover for a random target 𝑥. We compare the average to the expected number of MurmurHash2
calls needed in the attack of [75] given in Section 3.4.2, namely 𝑘𝑚𝐻𝑘 .

𝜖, 𝛿 (𝑚, 𝑘) Ours [75]
2.7 × 10−3, 1.8 × 10−2

(1024, 4) 66.85 8533.32

6.6 × 10−4, 1.8 × 10−2

(4096, 4) 61.11 34133.36

2.7 × 10−3, 3.4 × 10−4

(1024, 8) 124.22 22264.72

6.6 × 10−4, 3.4 × 10−4

(4096, 8) 128.8 89058.72

mounted it against the Redis Count-Min sketch and selected a random target element. We found a

cover for said element and verified that for a fixed number of insertions 𝐼 we obtained the expected

error on the target, i.e. achieved error ⌊ 𝐼
𝑘
⌋ in all trials.

4.2.3 Top-K

We present three attacks on the Top-K structure in Redis. The first two attacks suppress the

reporting of the true top-𝐾 elements, while the third attack causes frequency overestimates by

violating the no-fingerprint collision assumption.

4.2.3.1 Known top-𝐾 hiding attack

Consider a Top-K structure with parameters 𝑚, 𝑘, decay, 𝐾 . After initializing

TK[𝑚, 𝑘, decay, 𝐾] 𝜎, a collection of data C with true top-𝐾 elements 𝐹 is generated from some

honest distribution (that is, a distribution that does not depend on the internal randomness of the

structure). In practice, we can take this to be some collection of network traffic or a collection of

items in a large database.

Then, an adversary A is given access to insertion and query oracles Ins(·) := TK.ins(·, 𝜎)

and Qry(·) := TK.qry(·, 𝜎). In a known top-𝐾 hiding attack, the adversary receives 𝐹 as input

and wins if it suppresses the reporting of the true top-𝐾 elements 𝐹. The adversary’s success can

be checked by inserting C and checking whether [𝑓 ∉TK.list(𝜎)] for all 𝑓 ∈ 𝐹. Due to the

probabilistic decay mechanism, we need the adversary to be able to insert elements into the

98

structure before the honest collection is processed. In practice this is reasonable, as adversaries

can time their attacks to ensure they have early access to the structure.

To carry out this attack, we adapt the strategy from [75] given in Section 3.4.3. We begin by

computing a cover using the inversion strategy for every element in 𝐹. We then insert every

element in the cover 𝑡 times through Ins(·) calls, where 𝑡 is computed such that there exists

negligible probability that, after the cover is inserted, any element from 𝐹 will ever own any of

their counters. The algorithm to compute 𝑡 takes inputs 𝑝, 𝑛, where 𝑝 is the probability that a

cover element will relinquish ownership of its counters and 𝑛 is the number of colliding insertions

we expect. We set 𝑝 = 2−128 and 𝑛 to the frequency of the maximum 𝑓 ∈ 𝐹 for this attack.

Once C is inserted after the attack phase, all elements in 𝐹 will have estimated frequency equal to

zero, and will in turn not be reported in the top-𝐾 list as they should.

In practice, 𝑡 will be quite small compared to the frequencies of the elements in 𝐹 for a

real-world data collection 𝐶. The frequency of all 𝑓 ∈ 𝐹 is often of the order of 105 or greater,

yielding 𝑡 of the order of 103 for 𝑝 = 2−128. Thus, the true top-K of C equals the top-K of the new

stream consisting of our attack elements concatenated with C. For more details on this attack

(including the calculation of 𝑡), see Figure 4-4.

We expect an equivalent of 16𝑘 |𝐹 | calls to MurmurHash2 to find a cover for known true

top-K list 𝐹. To test our attack, we initialized a TK[4096, 20, 0.9, 20], selected our data

collection C as the individual words in the English language version of “War and Peace”, and

computed 𝐹 for 𝐾=20 for C. Our choice of C was inspired by Redis’ blog post introducing the

structure [83]. We then computed a cover on 𝐹 using our technique described above. Averaged

over 100 trials, we made an equivalent of 2580 calls to MurmurHash2, matching our analysis. We

then inserted each element in the cover 𝑡 times for 𝑡=206 based on input

parameters 𝑝=2−128, 𝑛=34577 (the frequency of the most frequent element). After this, the

entirety of C was inserted. In every trial, the reported top-𝐾 and 𝐹 were disjoint as desired.

99

4.2.3.2 Hidden top-𝐾 hiding attack

We consider a similar attack model to Section 4.2.3.1 with the modification that the

adversary A receives no input. Since A does not know 𝐹, it must compute a cover for the entire

structure, i.e. all 𝑘×𝑚 counters. We go counter-by-counter and use hash inversion to compute a

cover element for each counter. Note, however, that when computing a cover element for a

particular counter, we collect additional positions in other rows that the element touches (if we

have not yet covered said positions). In this way, we actually do less work than the expected

equivalent of 16𝑚𝑘 calls to MurmurHash2.

After computing this cover for the entire structure, A then inserts each element in the

cover 𝑡 times through Ins(·) calls, with 𝑡=500 (corresponding to 𝑝=2−128, 𝑛=1011 from the

previous method of computing 𝑡). In practice, setting 𝑡=500 means that with overwhelming

probability no true top-K element will ever own its counters for any realistic data collection.

Then, for any subsequent items inserted that are not part of the cover, their estimated frequency

will be zero. In practice, this blocks any 𝐹 from any realistic data collection C from being

reported in the top-𝐾 list. This attack can be seen as a denial-of-service attack, as after the attack

phase the structure is prevented from making accurate frequency estimates for any elements that

are subsequently inserted into the Top-K. Our full attack is given in Figure 4-5.

We verified the correctness of the attack as in Section 4.2.3.1, except again now

setting 𝑡=500.

4.2.3.3 NFC assumption violation attack

Consider a Top-K structure with parameters 𝑚, 𝑘, decay, 𝐾 . After initializing

TK[𝑚, 𝑘, decay, 𝐾] 𝜎, an adversary A is given access to insertion and query oracles:

Ins(·) := TK.ins(·, 𝜎) and Qry(·) := TK.qry(·, 𝜎). The adversary’s goal in an NFC assumption

violation attack equates to the same goal as of that in Section 4.2.2.1. That is, A receives 𝑥 as

input and is challenged with causing the frequency of 𝑥 to be overestimated. Again we can use

TK.qry(𝑥, 𝜎) − 𝑛𝑥 as a metric of success, where 𝑛𝑥 is the number of times 𝑥 was actually inserted

into the Top-K structure.

100

Recall that under the no-fingerprint collision assumption, the Top-K structure only

underestimates frequencies of elements. We will show that, with the Redis implementation of

Top-K, it is trivial to violate this assumption, and thus create large frequency overestimation errors.

Table 4-2. Experimental number (averaged over 100 trials) of MurmurHash2 inversion trials
and MurmurHash2 calls needed to find a cover element for a randomly selected target 𝑥. Recall
that the cost of each is about the same.

(𝑚, 𝑘) MurmurHash2 inversions MurmurHash2 calls
(1024, 4) 4296.69 1072.52
(4096, 4) 18489.68 4602.56
(1024, 8) 1849.71 905.44
(4096, 8) 10058.16 5031.52

To create large error on a given target 𝑥, we compute multicollisions on the fingerprint of 𝑥,

stopping when we find a collision such that it shares one row position with 𝑥. Unlike the attack

against the Count-Min sketch, we only need to find such a collision in one row, as the Top-K takes

the maximum count over all owned counters. Therefore, we are now finding a single cover

element 𝑦. Then, by inserting the cover element 𝐼 times using Ins(𝑦),A can expect to create error

𝐼 on the frequency estimation of 𝑥, i.e. TK.qry(𝑥, 𝜎) − 𝑛𝑥 ≥ 𝐼. Experimental results measuring

the cost for this attack are given in Table 4-2. We need MurmurHash2 computations (𝑘 per

successful inversion) to check if the collision element we found matches any of the row positions

to which our target maps.

We verified the correctness of the attack in the same way as in Section 4.2.2.1, obtaining the

expected error 𝐼 on the randomly select target 𝑥 over all trials. For more details of our attack, see

Figure 4-6.

4.3 Potential Countermeasures

In this section, we outline some countermeasures that limit the effectiveness of our attacks.

For remarks on the Bloom filter and Cuckoo filter we again refer the reader to [79].

Protecting the count-min sketch and Top-K against frequency estimation attacks is

challenging. Recall, that both the count-,in sketch and the Top-K are a class of probabilistic data

structures called compact frequency estimators (CFE). In Chapter 3 we explore both of these

101

structures in detail, and show that even when switching the hash functions to a keyed primitive

(e.g. a PRF) and keeping the internal state of the structure efficient attacks that cause massive

frequency estimation errors are still possible [75]. That is the leakage from insertions and queries

to a black-boxed structure is sufficient to carry out the style of attacks we present in this paper.

The choices of Redis make these attacks easier to carry out, but findings are negative in any case.

It is of great interest to explore secure CPDS for frequency estimate queries that are tenable

for real world applications. One could of course disallow queries to the structure, or use some

public-key infrastructure to only allow insertions from authenticated parties. However, this clearly

limits both the usability and performance. Another possibility is to explore new ways of

constructing frequency estimation PDS, such as the Count-Keeper introduced in [75]. While this

structure remains susceptible to the types of attacks we present here, they are less effective, and

the Count-Keeper has a native ability to flag suspicious frequency estimates.

102

known F attackIns(𝐹, 𝑛, 𝑝, 𝑝𝑝)

1 : 𝑡 ← get t(𝑛, 𝑝, 𝑝𝑝)
2 : F cover← find F cover(𝐹, 𝑝𝑝)
3 : for 𝑒 ∈ F cover
4 : for 𝑖 ∈ [𝑡]
5 : Ins(𝑒)
6 : return done

get t(𝑛, 𝑝, 𝑝𝑝)

1 : 𝑚, 𝑘, decay, 𝐾 ← 𝑝𝑝

2 : 𝑔(𝑡) ← log2(𝑘 · 𝑛𝑡 · decay𝑡 (𝑡+1)/2) − log2(𝑝)
3 : 𝑡1, 𝑡2 ← FindRootsOf(𝑔)
4 : if 𝑡1 > 1 or 𝑡2 < 1 : 𝑡 ← 1
5 : if 𝑡2 > 1 : 𝑡 ← ⌈𝑡2⌉
6 : if 𝑡2 = 1 : 𝑡 ← 2
7 : return 𝑡

find F cover(𝐹, 𝑝𝑝)

1 : 𝑚, 𝑘, decay, 𝐾 ← 𝑝𝑝

2 : F cover← ∅
3 : for 𝑓 ∈ 𝐹
4 : (𝑝1, . . . , 𝑝𝑘) ← ℎ(𝑓 , 1), . . . , ℎ(𝑓 , 𝑘)
5 : for 𝑖 ∈ [𝑘]
6 : 𝑦 ← MurmurHash2Inverse(𝑝𝑖 , 𝑖)
7 : F cover← F cover ∪ {𝑦}
8 : return F cover

Figure 4-4. The Top-K known top-𝐾 hiding attack.

103

hidden F attackIns(𝑛, 𝑝, 𝑝𝑝)

1 : 𝑡 ← 500
2 : S cover← find S cover(𝑝𝑝)
3 : for 𝑒 ∈ S cover
4 : for 𝑖 ∈ [𝑡]
5 : Ins(𝑒)
6 : return done

find S cover(𝑝𝑝)

1 : 𝑚, 𝑘, decay, 𝐾 ← 𝑝𝑝

2 : 𝜂← zeros(𝑘, 𝑚)
3 : S cover← ∅
4 : for 𝑖 ∈ [𝑘]
5 : for 𝑗 ∈ [𝑚]
6 : if 𝜂[𝑖] [𝑗] = 0
7 : 𝑦 ← MurmurHash2Inverse(𝑗 , 𝑖)
8 : S cover← S cover ∪ {𝑦}
9 : (𝑝1, . . . , 𝑝𝑘) ← ℎ(𝑦, 1), . . . , ℎ(𝑦, 𝑘)

10 : for 𝑟 ∈ [𝑘]
11 : 𝜂[𝑟] [𝑝𝑟] ← 1
12 : return S cover

Figure 4-5. The Top-K hidden top-𝐾 attack.

104

nfc violation attackIns(𝑥, 𝑝𝑝, 𝐼)

1 : 𝑦 ← find cover element(𝑥, 𝑝𝑝)
2 : until 𝐼 insertions are made
3 : Ins(𝑦)
4 : return done

find cover element(𝑥, 𝑝𝑝)

1 : 𝑚, 𝑘, decay, 𝐾 ← 𝑝𝑝

2 : seed← 1919
3 : done← ⊥
4 : 𝑃← (ℎ(𝑥, 1), . . . , ℎ(𝑥, 𝑘))
5 : fp𝑥 ← ℎfp(𝑥)
6 : while done = ⊥
7 : 𝑦 ← MurmurHash2Inverse(fp𝑥 , seed)
8 : 𝐶 ← (ℎ(𝑦, 1), . . . , ℎ(𝑦, 𝑘))
9 : for 𝑖 ∈ [𝑘]

10 : if 𝑃[𝑖] = 𝐶 [𝑖]
11 : done← ⊤
12 : return 𝑦

Figure 4-6. The Top-K no-fingerprint collision violation attack. We use the invertibility of MurmurHash2
to find a single fingerprint collision and row pair element for the target 𝑥. We then repeatedly
insert the element to create error.

105

CHAPTER 5
PROVABLY ROBUST PROBABILISTIC SKIPPING-BASED DATA STRUCTURES

In this chapter we consider a distinct subset of probabilistic data structures, which ensures

correctness (and hence are not compressing) while offering fast probabilistic runtime guarantees,

have received considerably less attention in the literature. Existing security analyses, such as those

addressing the robustness of hash tables [13, 15, 39, 40, 14, 17] and skip lists [18], provide

valuable insights but lack formal adversarial models and rigorous security analyses. Due to their

runtime properties, we refer to these as probabilistic skipping-based data structures (PSDS), as

they inherently “skip” over parts of their internal structure to accelerate lookup operations. The

lack of research in this area is particularly concerning given that the studies on hash tables have

already uncovered practical attacks, including methods to mount denial-of-service attacks attacks

against intrusion detection systems [39], web application servers [14], and the QUIC protocol [17].

5.1 Structures we Analyze

We give pseudocode and textual description of the probabilistic skipping-based data

structures we consider in this work: hash tables, skip lists and treaps.

5.1.1 Hash Tables

We give a pseudocode description of a hash table (HT) in Figure 5-1. Elements consist of a

pair of entries (𝑥, 𝑣) of a unique index value 𝑥 and the value 𝑣. An instance of HT consists of 𝑏

buckets, each containing an (initially empty) linked list L, and a mapping Hash(𝐾, ·) from the

index value 𝑥 to the bucket number in [𝑏].

An index-value pair (𝑥, 𝑣) is inserted into the HT representation by computing

Hash(𝐾, 𝑥)=𝑖 and traversing it to the 𝑖-th bucket. We then check if the pair is already in the linked

list L[𝑖] stored and delete the prior mapping if this is the case. This is necessary since we insert

elements according to the index key 𝑥, and the value entry 𝑣 may have changed in the new request.

Finally, we insert the new pair into L[𝑖]. Likewise, a key is deleted by searching in the bucket to

which it is assigned and removing the key and its associated value from the linked list L[𝑖] in the

bucket if this pair exists there. Traditionally, it is assumed that 𝑖 = Hash(𝐾, 𝑥), where Hash is a

fast-to-compute hash function with good (enough) collision resistance properties. However, we

106

Rep𝐾 (S)

1 : for 𝑖 ← 1 to 𝑚 do
2 : 𝑇 [𝑖] ← new L
3 : for (𝑥, 𝑣) ∈ S
4 : 𝑇 ← Up𝐾 (𝑇, ins(𝑥,𝑣))
5 : return 𝑇

Up𝐾 (𝑇, ins(𝑥,𝑣))

1 : 𝑣′ ← Qry𝐾 (𝑇, qry𝑥)
2 : if 𝑣′ ≠ ★
3 : Up𝐾 (𝑇, del𝑥)
4 : 𝑖 ← Hash(𝐾, 𝑥)
5 : 𝑇 [𝑖] .insert((𝑥, 𝑣))
6 : return 𝑇

Up𝐾 (𝑇, del𝑥)

1 : 𝑖 ← Hash(𝐾, 𝑥)
2 : 𝑇 [𝑖] .remove(𝑥)
3 : return 𝑇

Qry𝐾 (𝑇, qry𝑥)

1 : 𝑣 ← ★

2 : 𝑖 ← Hash(𝐾, 𝑥)
3 : 𝑣′ ← 𝑇 [𝑖] .find(𝑥)
4 : if 𝑣′ ≠ null
5 : 𝑣 ← 𝑣′

6 : return 𝑣

Figure 5-1. A possibly keyed hash-table structure HT[Hash𝐾 , 𝑏] admitting insertions, deletions, and
queries for any 𝑘 ∈ U𝜅 and its associated value 𝑣. The parameters are an integer 𝑏 ≥ 1, and a
keyed function Hash : K ×U𝜅 → [𝑏] that maps the key part of key-value pair data-object
elements (encoded as strings) to a position in the one of the table buckets 𝑣.𝑇 . A particular
choice of parameters gives a concrete scheme. Each bucket contains a simple linked list L
equipped with its usual operations insert, find, and remove for insertion, searching, and
deletion. If an item is not contained in the map, the distinguished symbol ★ is returned.

generalize here to make the exposition cleaner and allow the mapping to depend upon secret

randomness (i.e., a key 𝐾). To query a key for its associated value, the algorithm Qry(qry𝑥)

searches the bucket 𝑥 maps to and returns the index-value pair if it exists there; otherwise, we

return the distinguished null symbol ★.

Hash tables are widely adopted for their 𝑂 (1) amortized average-case complexity for

insertions, deletions, and look-ups, assuming ”good” collision-resistance properties in the internal

hash function. This efficiency has led to their extensive use across various applications, including

implementations of associative arrays [34] and sets [35] in programming languages, cache

systems [36], and database indexing [37]. However, despite their performance advantages, hash

tables have inherent functional limitations—they cannot efficiently support operations that depend

107

on order relationships between keys, such as range queries, predecessor/successor lookups, or

sorted traversals, restricting their applicability in scenarios where such operations are essential.

5.1.2 Skip Lists

In Figure 5-2, we give a pseudocode description of the skip list (SL). SL maintains an

ordered collection of data that allows for average-case runtime 𝑂 (log 𝑛) for search, insertions, and

deletions (where the size of the represented collection is 𝑛). The structure is maintained as a

hierarchy of linked lists, with the first level containing all the elements of the collection and each

higher level in the structure skipping over an increasing number of elements. Searching (as well as

insertions and deletions) starts at the highest level, only moving down to lower levels as necessary.

The specific elements that are skipped at each level are determined either probabilistically or

deterministically (using (say) a PRF) at insertion time – we focus on the probabilistic version of

this structure in this paper. For a full structure description, we point to the original paper [33].

Skip lists provide an elegant probabilistic alternative to balanced binary search trees. They

are widely deployed in industry applications – managing millions of Discord server

members [84], storing data in Apache Web Servers [85], and indexing SingleStore databases [86].

Unlike hash tables, skip lists efficiently support range queries, ordered traversals, and

predecessor/successor operations, making them valuable for various applications [87, 88, 89].

5.1.3 Treaps

In Figure 5-3 , we give a pseudocode description of the treap (TR). A treap [90] combines

the algorithms of a binary search tree (BST) and a heap and achieves an expected height of

𝑂 (log 𝑛) [90]. Inserting a node into a treap works analogously to a BST, but the node gets

assigned an additional random priority value. Subsequently, the algorithm rotates the tree to

maintain a heap order amongst the priority values without affecting the key ordering. For

instance, in a MIN heap, the parent nodes are guaranteed lower priority values than their children.

Intuitively, when interpreting the priority values as timestamps, the resulting treap will correspond

to a binary search tree in which all nodes have been inserted in random order (i.e., a randomized

108

binary search tree). Deletion first rotates a node down the heap without affecting the key ordering

and then removes it once it reaches a leaf position.

Treaps efficiently support the full spectrum of binary tree operations, including range

queries, predecessor/successor lookups, in-order traversals, and advanced tree operations like join,

split, and union. This versatility has made treaps valuable in applications where search efficiency

and ordered operations are critical requirements, such as implementing retroactive data

structures [91].

5.2 Unifying Probabilistic Skipping-Based Data Structures

Informally, one can think of a probabilistic skipping-based data structure as a data structure

that uses some form of randomness (either fixed at initialization time or freshly sampled per

operation) to distribute the underlying collection within its representation. This randomized

representation is to (generally) allow for efficient search by “skipping” over some elements, such

that the resulting expected runtime is sublinear with high probability.

For instance, hash tables employ a hash function to “randomly” map elements to buckets,

and therefore, one only has to search in this bucket for a desired element. Likewise, skip lists

randomly assign heights to elements to facilitate “skipping” over a sequence of elements while

performing a search. While the treap randomly assigns priority values to maintain an

(approximately) balanced tree representation. In turn, the hash table achieves non-adaptive

adversarial expected runtime 𝑂 (1) for insertions, deletions, and search; similarly, the skip list and

treap achieve non-adversarial expected runtime 𝑂 (log 𝑛) for these operations on an ordered

collection (but has other advantages such as supporting range queries).

In contrast to compressing probabilistic data structures (e.g., Bloom filters, count-min

sketches, HyperLogLogs, etc.), PSDS always return a correct Qry response. Further, unlike

self-balancing data structures (e.g., splay trees, red-black trees, sorted arrays, etc.), skipping data

structures do not require complex update mechanisms to maintain favorable representations. That

is, under non-adversarial conditions, using randomness is sufficient to facilitate efficient

109

operational runtimes (with high probability) without the overhead of complex and potentially

expensive rebalancing algorithms.

While this provides an intuitive notion of a skipping-based data structure, it fails to provide

a formal or constructive definition. Therefore, let us consider the following. Take a hash table,

whose representations are built over a size 𝑛 set of elements (index keys) from the domain {0, 1}𝑛

by running them each through a hash function and putting them into a bucket depending on the

output of this hash function. Under the assumption that the hash function is uniform and the

non-adversarial assumption that the set of elements is selected uniformly at random from the

universe of all elements, then the elements in the table can be viewed as an (unordered) sequence

of i.i.d. random variables. That is, we can decompose a hash table’s representation

as 𝐵1, 𝐵2, . . . , 𝐵𝑁 where ∀𝑖 ∈ [𝑛] : 𝐵𝑖 ∼ U({1, 2, . . . , 𝑏}), where 𝑏 is the number of buckets for

the particular structure.

For a skip list, we can take a similar view. Here, we again assume that a skip list represents a

size 𝑛 set of elements from the domain {0, 1}𝑛. Additionally, we assumed that the set is

well-ordered. Under the non-adversarial assumption that all updates are made uniformly at

random from the universe of all elements, the representation can be viewed as a sequence of

ordered i.i.d. random variables (again, in the adaptive adversarial setting independence of these

random variables does not necessarily hold). We can decompose the skip list representation

as 𝐻1, 𝐻2, . . . , 𝐻𝑁 where ∀𝑖 ∈ [𝑛] : 𝐻𝑖 ∼ G(𝑝) for the geometric distribution, where 𝑝 is the

probability parameter of the structure. That is, a skip list can be viewed as the ordered sequence of

its elements heights. The sequence of random variables 𝐻1, 𝐻2, . . . , 𝐻𝑁 (heights) is sorted

according to the order of the keys in the representation. Similarly, one can decompose the treap

representation as 𝑃1, 𝑃2, . . . , 𝑃𝑁 where ∀𝑖 ∈ [𝑛] : 𝑃𝑖 ∼ U([0, 1]). This sequence of random

variables represents the priority of elements in the treap, and the sequence is again ordered by the

keys in the representation. That is, treaps can be viewed as a binary search tree where the order of

insertion is determined by the randomly sampled priorities [32].

110

With this intuition built, we arrive at our definition for probabilistic skipping-based data

structures.

Definition 2 (Probabilistic Skipping-Based Data Structure). A probabilistic skipping-based data

structure that represents a size 𝑛 collection of elements from the domain {0, 1}𝜆 is a data structure

whose representation can be decomposed as a sequence of identically distributed random

variables from some distributions X. This sequence is either unordered (for data structures

representing unordered data, like hash tables) or implicitly ordered by some well-defined ordering

over the domain of the underlying collection (as is the case for ordered data structures, like skip

lists and treaps).

This definition offers a few key advantages. First, from an attack perspective, it helps us

formally specify the necessary conditions for an adversary to succeed in our security game. For

hash table attacks, this means forcing a large portion of the discrete uniform random variables

𝐵1, 𝐵2, . . . , 𝐵𝑛 to be equal – a condition any successful attack strategy must achieve to degenerate

the data structure. Additionally, it allows us to precisely differentiate between adaptive and

non-adaptive adversarial capabilities. When decomposing a skip list into geometric random

variables 𝐻1, 𝐻2, . . . , 𝐻𝑁 (sorted according to key order), an adaptive adversary can observe

previous outcomes and strategically insert a new 𝐻𝑖 at any position in the sequence, thereby

creating dependencies among the variables. In contrast, a non-adaptive adversary cannot observe

previous geometric random variable outcomes, resulting in a final sequence 𝐻1, 𝐻2, . . . , 𝐻𝑁 that

maintains independence among the sequence of random variables.

Second, this stochastic formalization enables the application of well-established

probabilistic techniques to derive tight bounds on adversarial success probabilities: balls-and-bins

analysis for hash tables and martingale-based arguments for skip lists and treaps. Finally, for

researchers looking at different PSDS from the ones we consider, it allows for generalization of

our robust data structures: proving security for one structure characterized by a particular

sequence of identically distributed random variables allows us to transfer robustness techniques to

111

other structures of the same type. Though specific structural details may prevent exact technique

transfer, this approach should inform effective general strategies.

5.2.1 Timing Side Channels

PSDS share a critical vulnerability: their runtime variation for distinct queries directly

reveals information about their internal structure. This inherent timing side-channel has been

successfully exploited in attacks against hash tables with (secret) salts [39] and skip lists [18]. For

treaps, this vulnerability also manifests, as runtime correlates with node depth, potentially

exposing the complete internal structure when combined with the ordering of the inserted

elements. While remote attackers might face challenges like network latency in precisely

measuring timing differences, recent research demonstrates that timing side-channels can be

exploited with remarkable precision – as shown in [92], where researchers recovered an AES key

from a Bluetooth chip’s hardware accelerator.

Implementing enforced constant-time operations fails as a solution, as this would require the

data structure to always operate at worst-case (linear) time, defeating the purpose of using these

efficient structures. Similarly, making the data structure oblivious to prevent information leakage

has significant limitations. Such approaches are inherently fragile – once an adversary learns

anything about the internal structure, the security guarantees collapse entirely. As

aforementioned, previous attempts to prevent information leakage in skip lists [18] by randomly

swapping elements have proven unsuccessful.

Given these considerations, we adopt a more realistic approach by considering a very strong

adversarial model. We grant the adversary full access to the internal structure of the PSDS, then

prove that even with this knowledge, they cannot successfully degenerate the structure. This

robust security model acknowledges that side channels inevitably exist in practical

implementations and builds defenses that remain effective despite full information leakage. While

this represents a strong adversarial capability, we argue it better reflects real-world threat

scenarios than a model that assume perfect or partial information hiding.

112

5.2.2 Towards Robust PSDS

We observe that two abilities allow an adaptive adversary to shape the distribution of data in

a PSDS such that subsequent operations on the structures are degraded with high probability. The

first is the ability to delete elements. This allows an adversary to degenerate a structure after a

series of insertions by deleting unfavorable (w.r.t. to the adversary’s goal) elements. The second is

the ability of the adversary to influence where a particular element gets placed in the structure

upon insertion. This is akin to knowing in advance which bucket an element will be inserted into

in a hash table, at what position and height an element will be inserted in a skip list, or the priority

an element will receive upon insertion to a treap. Therefore, we propose two inexpensive and

general modifications to the base PSDS to make them robust in an adversarial setting. We will

later prove these modified structures secure.

5.2.2.1 Lazy deletion

The first modification prevents the adversary from deleting (unfavorable) elements from the

structure. This stultifies the ability of an adversary to perform a skip list degeneration-style attack,

even with full access to the data structure’s internal state.

Removing the deletion functionality entirely from our data structure would be undesirable.

Instead, we use a simple scheme that allows for removing elements without modifying the

underlying structure of a PSDS that previous insertions have imposed. We achieve this by simply

labeling an element as “deleted”. For the hash table, we replace the element’s label (e.g., the

key-value data) with a distinguished symbol ⋄ but do not modify the linked list in a hash table

bucket by removing the node. For operational reasons, in the skip list and treap, we store a bit

along with each node that indicates whether an element has been removed, but do not overwrite

the originally inserted key with a distinguished symbol.

This change prevents the adversary from eliminating desired skip connections in a skip list,

obtaining trivial wins in our security model against a hash table (when taking the represented set to

be the collection of all empty and non-empty elements), or only allowing elements to persist solely

on the longest path in a treap. However, this modified deletion functionality affects the space

113

efficiency of the structures. In later sections, we discuss approaches to ameliorating such concerns

and analyze the trade-offs of these approaches. Lastly, since “all bets are off” when deletions are

allowed, we implicitly provide security bounds that would compare to insertion-only versions of

these structures in the non-adaptive case. That is, since an adaptive adversary can pathologically

degrade the base structures, we enforce that using our modified deletion mechanisms never helps

the adversary achieve their goal (in fact, this point is the first step of all our security proofs).

5.2.2.2 Adversarial robustness

The second modification eliminates (to the greatest extent possible) an adversary’s ability to

predict element placement within data structures. All analyzed data structures require distinct

security approaches for adversarial robustness, which heavily depends on how randomness is used

internally. Skip lists and treaps use per-insertion randomness while preserving key-based

ordering. During queries, the element’s key guides traversal, although specific paths vary based

on insertion-time randomization. Hash tables function fundamentally differently – they determine

bucket placement solely based on random experiment outcomes rather than element keys. This

approach necessitates reproducing identical outcomes during search queries. Conventional

implementations rely on public hash functions, creating a critical security vulnerability:

adversaries can precalculate outcomes for elements and execute complexity attacks.

To provide adversarial robustness for hash tables, we replace public hash functions with

secretly keyed primitives that effectively behave like truly random functions, preventing

adversarial precalculation. Note that this approach necessitates secret key management, which

presents potential implementation challenges. For skip lists, we develop an unkeyed, algorithmic

approach to secure against adversarial manipulation. Despite an adversary’s inability to have a

priori knowledge of coin flip outcomes that determine the height of an element, skip lists remain

vulnerable – an adversary can strategically shift unfavorable random outcomes to one side of the

structure, effectively placing elements with specific heights at chosen positions. We counter this

by enforcing a local balance in the internal representation through a constant overhead swap

operation, making such attacks exponentially more difficult.

114

Note that simply pre-applying a (secretly-keyed) random function to the items a skip list

stores, as in the hash table mechanism, would alter the structure’s ordering, rendering these data

structures incapable of performing range queries, join operations, and other order-dependent

functions. We therefore developed security mechanisms that maintain fundamental ordering

properties while enhancing attack resilience.

Treaps, by contrast,inherently rebalance their entire structure based on the priorities of all

previously inserted elements. As we will demonstrate, this property already substantially reduces

an adversary’s ability to place elements at positions of their choosing.

5.3 A Security Model for Probabilistic Skipping-Based Structures

Our goal is to capture the average-case run time of operations PSDS being conserved in the

face of an adaptive adversary that can control the data represented by the structure. Loosely, the

average-case run time of PSDS relates to how data is “distributed” in the representation. For

instance, an ideal hash table would distribute the elements it represents equally among the

buckets. Analogously, ideal ordered structures (e.g., a skip list or a treap) would be isomorphic to

a balanced tree. If a data collection was fixed, and we ignored a desire for efficiency, one could

always craft an ideal representation with respect to the runtime of queries. For a hash table, one

could find a hash function that equally distributes the fixed collection to its buckets. For a

fixed-ordered structure, one could simply assign the heights (depths) of elements such that the

shortest possible search paths are guaranteed, as with a perfectly balanced tree structure.

However, PSDS are used in mutable settings. For this reason (and for efficiency), PSDS use

some form of randomness to process updates dynamically and update their representation. Hash

tables select a random hash function to map elements to buckets, and ordered PSDS employ

per-operation randomization during insertion to determine an element’s position in the structure

— typically through coin flips for skip lists or random priority assignments for treaps. These

processes have been shown (with high probability) to yield representations of a dynamic data

collection that are “close” to the ideal representations. Hash tables are analyzed using standard

ball-and-bin arguments. Assuming a collision-resistant hash function and a load factor such

115

that 𝑛 ≈ 𝑏 (i.e., the size 𝑛 of the data collection stored is about equal to the number 𝑏 of buckets),

it is known [93] that with probability 𝑝 = 1 − 1
𝑏

that at any point in time no bucket has more

than 3 log 𝑏
log log 𝑏 entries. This maximum bucket population bounds directly corresponds with a

subsequent operation’s maximum insertion, deletion, or query time. Likewise, the maximum

search cost path of any element queried to a skip list or treap has been shown to not

exceed 𝑂 (log 𝑛) with high probability (where the exact constants are functions of the parameters

of the structure).

The above analyses are done under a strictly non-adaptive adversarial assumption. That is,

these probabilistic bounds on the “distribution” of elements are done under the assumption that

the updates and queries made to the structure do not depend on the internal randomness of the

structure, the results of past operations, or the state of the representation. In the adaptive

adversarial setting, this cannot be assumed. This is seen in both the hash flooding attack and the

skip list degeneration attack [13, 39, 14, 18]. Therefore, intuitively, a robust PSDS would conserve

the desired element distribution property of the structure with high probability, even in the face of

an adaptive adversary. This is what we aim to capture with our formal security model below.

Let Π = (Rep,Up,Qry) be a probabilistic skipping-based data structure. We define a notion

of adversarial property conservation involving Π, a property function 𝜙 : D × {0, 1}∗ → R, a

target bound 𝛽 : P × Z+ → R, and a threshold 𝜖 ∈ R, 𝜖 > 0.

A property function 𝜙 takes as input the data object 𝐷 ⊆ D represented by repr (the

representation the adversary produces during its execution) and the representation repr itself and

outputs a value that indicates the concrete property for the given adversarially chosen data

collection and corresponding representation. This function represents the desired property one

would like to conserve. For all structures of interest, this is the maximum search path cost over all

elements 𝑑 ∈ 𝐷 1. The intuition is that a complexity attack is deemed successful precisely when it

significantly increases the maximum search path cost; therefore, a robust data structure must
1This property sufficiently captures the search path cost of any 𝑑 in the universe of all possible elements, as a

search for an element not in the representation terminates with at most one more pointer traversal compared to any
element in the representation.

116

maintain nearly equivalent worst-case performance (with high probability) regardless of

adversarial manipulation. We give the exact property function for a hash table in Figure 5-5, for a

skip list in Figure 5-7 , and for a treap in Figure 5-6.

A target bound 𝛽 takes as input the structure parameters P (e.g., the number of buckets for a

given hash table) and a size of the represented data object |D| (denoted 𝑛 below), and outputs the

resulting bound value. We choose a target bound such that it corresponds to the known

non-adaptive bound for the property we want to conserve. For the hash table maximum search

path cost, this is 𝛽(⟨𝑏⟩, 𝑛) = 3 log 𝑏
log log 𝑏 . For the skip list and treap maximum search path, we

chose 𝛽(⟨𝑝, 𝑚⟩, 𝑛) = 𝑐 log1/𝑝 (𝑛) (for a small constant 𝑐), and 𝛽(⟨⟩, 𝑛) = 2 lg(𝑛) + 1, respectively,

as these are the (blunt) non-adversarial expected search path lengths [33, 28].

We give this notion of adversarial property conservation in Figure 5-4. The Adaptive

Adversary Property Conservation (AAPC) experiment aims to capture an adversary’s ability to

adaptively craft a representation repr of some dynamic and adversarially decided data object 𝐷,

such that when the property function 𝜙 is computed, the ratio of its output to the target bound’s

output is large (to win the experiment this ratio needs to exceed 𝜖). As the properties (and their

accompanying target bounds) measure how data elements are distributed in a particular

representation (and bound how they are distributed in the non-adaptive setting), this notion directly

translates to an adversary’s ability to disrupt the expected runtime of a data structure’s operations.

The AAPC experiment begins by setting a parameter 𝑟 = 0 and selecting a key 𝐾 from the

key space K. For unkeyed hash tables (insecure) and non-deterministic versions of the ordered

PSDS, the key space is the empty set. The adversary is then allowed to instantiate the data

structure with any initial data object 𝐶 (including the empty data object) via the Rep oracle and

receives back the resulting representation. We enforce that the adversary is only allowed to

call Rep once via the parameter 𝑟. This is to disallow the adversary from leveraging past

information from a data structure that is keyed with the same key 𝐾 to trivially win the game. That

is, keyed hash tables and deterministic PSDS must sample a fresh random key to guarantee

security.

117

The adversary is then allowed to make any sequence of Up and Qry calls. Upon each

update, we also update the internal data object 𝐷 kept by the experiment, as this is used for

computing 𝜙 and 𝛽. After each update, the updated representation repr is returned to the

adversary. Thus, the notion of security we propose is quite strong in that it allows an adversary to

have complete access to the structure’s internals during its execution (as discussed in

Section 5.2.1). The only information kept from the adversary is the secret key (in the case the

structure relies on one). This further makes calls to Qry unnecessary, as the adversary entirely

determines the underlying collection represented by the structure and has access to the internal

representation at all times.

The adversary ends its execution by announcing done or is implicitly done when it exhausts

its Up budget (the number of updates they are allowed to make). The experiment concludes by

outputting a bit that determines whether the adversary has successfully met the winning condition.

With this intuition built, we give our succinct formal definition of security.

Definition 3 ((𝜙, 𝛽, 𝜖, 𝛿, 𝑡)-Conserved). We say a skipping-based probabilistic data structure Π is

(𝜙, 𝛽, 𝜖, 𝛿, 𝑡)-conserved if the advantage of an AAPC-adversary A running in time 𝑡 is

less-than-or-equal to 𝛿 for some property function 𝜙, some target bound 𝛽, some 𝜖 ∈ R, 𝜖 > 0, and

some 𝛿 ∈ [0, 1). More precisely, we say the structure is (𝜙, 𝜖, 𝛽, 𝛿, 𝑡)-conserved iff,

Advaapc
Π,𝜙,𝛽,𝜖

(A) = Pr[Expaapc
Π,𝜙,𝛽,𝜖

(A) = 1] ≤ 𝛿

and write Advaapc[u,v]
Π,𝜙,𝛽,𝜖

(𝑡, 𝑞𝑄 , 𝑞𝑈 , 𝑞𝐻) as the maximum advantage of any AAPC-adversary running

in 𝑡 time steps and making 𝑞𝑄 calls to Qry, 𝑞𝑈 calls to Up, and 𝑞𝐻 calls to Hash in the ROM. We

are interested in ensuring Advaapc
Π,𝜙,𝛽,𝜖

(𝑡, 𝑞𝑄 , 𝑞𝑈 , 𝑞𝐻) ≤ 𝛿.

118

5.4 Robust Hash Tables

5.4.1 Insecurity Of Standard Hash Tables

5.4.1.1 Unkeyed hash tables

Consider a standard hash table instantiated with a fixed and publicly known hash function.

A simple pre-computation attack will trivially win our security experiment (with the experiment

parameters the same as in Theorem 5-1) with probability one (assuming the ability to make

sufficiently many local hash computations). An adversary can sample index keys from the

universe and compute the bucket they will map to by using the public hash function (assuming the

parameters of the structure are known). The adversary can select a target bucket and insert index

keys (with some arbitrary value) iff they map to this target bucket. In this way, an adversary can

ensure that all elements go to a single bucket, causing a linear overhead when searching for an

element in this bucket.

5.4.1.2 Keyed hash tables with deletions

Consider a hash table where we replace a public hash function with a secretly keyed

primitive, like a PRF. Our security game also yields a simple strategy for an adversary to win our

game with a high probability if the hash tables support deletions in the usual way. The adversary

selects a target bucket. Then it samples keys from the universe (along with arbitrary values for

these keys) and inserts them into the table. Observing the state of the table after each insertion,

the adversary deletes the element unless it has been inserted in the target bucket. At the end of the

adversary’s execution, the hash table will only have elements that reside in a single bucket. For

this reason, we do not allow adversaries to make deletions that actually remove elements from the

hash table and compare our adversarial results to a standard ball-in-bins result that assumes no

deletions.

While an attack of this nature may seem vacuous and an artifact of our security experiment,

it is designed to capture something more complex. Consider if you could guarantee that the state

of the hash table could remain hidden during the adversary’s execution. Then, it seems intuitive

that just keying the structure would result in robust construction per our security definition.

119

However, as evidenced by side-channel attacks against hash tables [39], it is nearly impossible to

guarantee that the internal structure of the hash table remains entirely hidden. Therefore, we

continually leak the entire state of the structure to the adversary during its execution to emulate

the best possible side channel (as detailed in Section 5.2.1).

5.4.2 A Robust Construction

We give a robust hash table construction in Figure 5-8. The robust hash table requires that a

keyed mapping function 𝑅 is used. Concretely, this can be instantiated as PRF that is then mapped

to 𝑏 (by, say, taking the output of the PRF modulo 𝑏). In particular, SipHash [15] provides

performance that is comparable to traditionally used non-cryptographic hash functions [11]. We

also use our modified deletion scheme. The deletion functionality simply relabels the key-value

pair to be deleted as (⋄,⋄), where ⋄ is a distinguished symbol. The insertion functionality changes

such that if an element to be inserted can overwrite a linked list node containing (⋄,⋄), it does;

otherwise, a normal insertion occurs. The query functionality remains unchanged.

We will now state and prove a formal security theorem and prove the robust hash table

construction secure in the AAPC model.

Theorem 5-1 (Robust Hash Table AAPC Security Result). Let Π be our robust hash table from

Figure 5-8, using PRF 𝐹 to map elements to buckets. For integers 𝑞𝑈 , 𝑞𝑄 , 𝑞𝐻 , 𝑡 ≥ 0 such that

𝑞𝑈 = 𝑏 (i.e., 𝑏 is the number of buckets in the hash table Π), it holds that Π

is (𝜙, 𝛽, 𝜖, 𝛿, 𝑡)-conserved with 𝜙 being the HT Maximum Bucket Population function

(Figure 5-5), 𝛽 = 3 log 𝑏
log log 𝑏 , 𝜖 = 1, and 𝛿 = (1

𝑛
+ Advprf

𝐹
(𝑂 (𝑡), 𝑏 + 𝑞𝑄)).

Proof. Observe that the modified insertion and deletion procedures ensure that once an element is

inserted into a bucket, it cannot actually be removed but rather only relabeled (either to (⋄,⋄) or a

newly inserted key-value pair). Observe that an optimal adversary never makes deletions for our

construction, as our modified deletion procedure ensures this cannot possibly add to the maximum

search path cost. Thus, we start with a game that assumes the adversary never makes deletions,

and the proof follows from a simple hybrid argument.

120

We start with a game G0 that is that the AAPC security game instantiated with our robust

hash table Π using PRF 𝐹, property function 𝜙 as the HT Maximum Bucket Population function

(Figure 5-5), and target bound 𝛽 = 3 log 𝑏
log log 𝑏 . As indicated by the theorem statement, we assume

that the adversary cannot insert more than 𝑞𝑈 = 𝑏 distinct elements into the table and, from above,

never makes a deletion. In this game, the number of times 𝐹 is evaluated on distinct inputs

bounded by the adversary’s resource budget. Calls to Up (also implicitly used by Rep) call 𝐹

once. Calls to Qry also call 𝐹 once. Thus, when executed with A, game G0 makes at

most 𝑄 = 𝑏 + 𝑞𝑄 queries to 𝐹.

Let G1 be identical to G0 except we use truly random sampling (modeled in the ROM) in

place of the PRF. If A cannot distinguish 𝐹 from a random function. Then, these games are

indistinguishable from the adversary’s perspective. We build a 𝑂 (𝑡)-time PRF distinguishing

adversary B making at most 𝑄 queries to its oracle such that

Advprf
𝐹
(B) = Pr[G0(A) = 1] − Pr[G1(A) = 1] . (5-1)

Adversary B𝐹 works by executing A in G1. Whenever G1 calls 𝐹, adversary B computes

the response using its own oracle. When A halts, if the winning condition of G1 is satisfied,

then B outputs 1; otherwise it outputs 0. Conditioning on the outcome of the coin flip 𝑧 in B’s

game, we have the following:

Advprf
𝐹
(B) = 2 Pr[Expprf

𝐹
(B = 1)] − 1

= 2(1
2

Pr[Expprf
𝐹
(B = 1) |𝑧 = 1]

+ 1
2

Pr[Expprf
𝐹
(B = 1) |𝑧 = 0]) − 1

= Pr[Expprf
𝐹
(B = 1) |𝑧 = 1] + Pr[Expprf

𝐹
(B = 1) |𝑧 = 0] − 1

= Pr[G0(A) = 1] − Pr[G1(A) = 1] .

121

Now, with G1, we immediately have a standard insertion-only truly random balls-and-bins

problem with ≤ 𝑞𝑈 = 𝑏 balls being randomly thrown into 𝑞𝑈 = 𝑏 bins. We can apply the standard

bound and conclude 𝜙(·) ≤ 𝛽(·) (that is 𝜙(·)
𝛽(·) ≤ 𝜖 = 1) with probability 1 − 𝛿

where 𝛿 = (1
𝑏
+ Advprf

𝐹
(𝑂 (𝑡), 𝑄)). The first term comes from the standard bound and the second

results from the hybrid we showed above. □

To give a concrete illustration of this bound, suppose we had 𝑛 = 𝑏 = 232 and 𝜖 = 1.

Leveraging our results from Theorem 5-1, the probability our maximum search cost path is

greater than 𝑀 = 3 log 232

log log 232 ≈ 21.47 is less than or equal to

𝛿 = 1
232 + Advprf

𝐹
(𝑂 (𝑡), 𝑏 + 𝑞𝑄) ≈ 2.33 · 10−10 + Advprf

𝐹
(𝑂 (𝑡), 𝑏 + 𝑞𝑄).

5.4.3 Robust Hash Tables in Real World Deployments

When initializing a hash table, there’s an implicit promise to allocate enough memory for a

pre-defined number of elements. If the collection grows too large and exceeds this capacity, the

structure must be resized, typically by doubling the number of buckets. For a key-value pair where

keys are 𝑥 bits and values are 𝑣 bits, we expect to allocate up to 𝛼 · 𝑏 · 𝑥 · 𝑣 bits of memory,

where 𝛼 is the load factor defined as 𝛼 = 𝑛
𝑏
, with 𝑛 being the number of elements and 𝑏 the

number of buckets [1]. If the load factor exceeds a set limit, resizing is required. In our security

experiment, we implicitly specify a load factor of 𝛼 ≤ 1 by setting 𝑞𝑈 = 𝑏, and in turn, never

allow this load factor to be exceeded. That is, we do not consider attacks that would trigger

resizing. Hence, we discuss the consequences of our robust construction in real-world

deployments below by analyzing how our modifications change the frequency of required resizing.

Consider a standard hash table with 𝐼 successful insertions and 𝐷 successful deletions. For

resizing to be necessary, it must be that 𝐼−𝐷
𝑏

has exceeded 𝛼. At some point, before resizing is

triggered, if the rate of insertions and deletions are roughly equal, a structure could persist

indefinitely without resizing.

Now consider a modification where deletions merely mark elements as deleted without

allowing for the possibility of being replaced by fresh insertions. That is, we do not modify the

insertion procedure to replace previously deleted elements. In this scenario, resizing occurs

122

when 𝐼
𝑏

has surpassed 𝛼, even if only a few elements are actually represented in the structure. This

could occur when an adversary inserts ≈ 𝛼 · 𝑏 elements, then deletes nearly all of them2, and

finally triggers a resizing with a few subsequent fresh insertions. Although this seems wasteful, it

aligns with the resizing logic since the total insertions exceed the threshold. That is, a resizing is

triggered only after the total number of insertions exceeds the threshold set by 𝛼 (regardless if a

deletion has subsequently nullified them).

We would like our robust hash table to conserve the property where deletions free space,

such that 𝐼
𝑏
> 𝛼 does not necessarily trigger a resizing. Thus, in addition to marking deleted

elements, we also prefer replacing said deleted elements with new insertions. This is desirable in

the non-adversarial case (where insertions, deletions, and queries do not depend on the internal

randomness of the structure, the internal state of the structure, or past operations), as one expects

freshly inserted elements will eventually replace deleted elements.

Adversarial strategies can still trigger resizing with few non-deleted elements. For example,

an adversary could insert 𝐼 = 𝛼 · 𝑏 − 1 elements, delete all but those in the least populated bucket,

and with a 1/𝑏 probability, trigger resizing with only those elements in that bucket remaining.

While this requires the adversary to exceed the threshold number of insertions, making it

marginally problematic in practice, the collection size at the time of resizing may be smaller than

the non-adversarial threshold. In sum, while adversaries can still trigger small collection resizing

under certain conditions, our approach ensures the hash table is provably robust and allows it to

persist for extended periods without resizing if insertions and deletions are balanced in the

non-adversarial setting.

5.5 Robust Skip Lists

5.5.1 Insecurity of Standard Skip Lists

As noted in [33], the heights of the elements in the skip list must be kept secret, or

otherwise, the skip list can be degenerated by simply deleting all elements in the list that are not at

height zero. In our security model, this attack is trivial. However, even when disallowing
2Of course, if an adversary deleted all elements, it would be trivial to flush the table and reinitialize the structure.

123

deletions (or using our modified deletion) functionality, an adaptive adversary can still degenerate

the skip list using a powerful but subtle strategy. We call this the gap attack and detail it next, but

use an intuitive rather than a formal description.

We assume the skip list takes values from {0, 1}𝑛, which we interpret as integers between 0

and 2𝑛 − 1. The gap attacker proceeds as in Figure 5-9. It starts by inserting an element in the

middle 𝑀 = 2𝑛−1 of the interval [𝐿, 𝑅] = [0, 2𝑛]. If this element gets assigned a height of 0 in the

skip list, i.e., is only inserted in the bottom list, then the attacker secures it by shifting the left

bound 𝐿 of the interval to 𝑀 , moving to that gap. In the other case, if the height is large, it “gives

up” this part of the skip list and moves the right bound 𝑅 of the interval to 𝑀 . Continue with the

new interval [𝐿′, 𝑅′] of half the size until 𝑛 elements have been inserted.

By construction, the value 𝑀 in each iteration is always an integer between 𝐿 and 𝑅.

Moreover, at the end of each iteration, there are only elements of height 0 in the interval [0, 𝐿] (if

any), and all elements of larger height in [𝑅, 2𝑛] (if any), since we set the left resp. right bound

accordingly in each iteration. Hence, after 𝑛 iterations and 𝑅 − 𝐿 = 1 we have all elements of

height 0 in [0, 𝐿], and elements of larger height in [𝐿 + 1, 2𝑛]. In each iteration, we insert an

element of height 0 with constant probability 1− 𝑝, which will eventually lie in the interval [0, 𝐿].

Therefore, the expected number of elements in [0, 𝐿] is (1 − 𝑝)𝑛. The resulting skip list is now

highly degenerated in the interval [0, 𝐿]. Specifically, it corresponds to a simple linked list of

average length (1 − 𝑝)𝑛 in this part. Hence, the search for the element 𝐿 takes linear time on

average, whereas a regular skip list would yield a logarithmic average search time. This is an

exponential blow-up in running time, which the gap attacker enforces.

5.5.2 A Robust Construction

In Figure 5-10, we give a pseudocode description of the robust skip list structure. Notably,

elements can be marked are deleted by marking a “deleted” bit 𝑑, that is stored in the node as ⊤. It

is important to point out that deleting and reinserting an element does not change the associated

height, as only the 𝑑 bit is flipped to ⊥. Importantly, we do not allow for deleted elements to be

124

replaced by subsequent insertions due to the need to preserve order-sensitive operations, and the

fact that such a mechanism could be used to accelerate the gap attack we present above.

We use a simple swapping mechanism to make the skip list robust (depicted in Figure 5-11).

When the skip list inserts an element (denoted as x), it first performs a standard insertion and then

invokes the swapping procedure using the update vector 𝑢 constructed during insertion. After

node x is inserted on layer ℓ, the mechanism counts nodes on layer ℓ − 1 between 𝑢[ℓ] and x[ℓ]

(x’s successor on level ℓ).

The middle element is then identified in a single pass using the tortoise and hare algorithm

[94]. If the middle element is not x itself (verified by checking ℓ < middle.lvl), a height swap

occurs: the middle element’s height increases to level ℓ while node x’s height decreases to level

ℓ − 1, effectively exchanging their heights.

This mechanism locally balances the skip list, preventing adversaries from creating large

sequences of same-height elements that would result in search path blowup. The gap attack

specifically becomes highly infeasible, as elements of a fixed height can no longer be shifted

toward one side of the data structure. Instead, heights are immediately swapped at the interval’s

midpoint, halving long sequences of elements on level ℓ − 1. Note, this approach effectively

handles corner cases where ℓ = list.header or 𝑛[ℓ] = null. Moreover, the interval typically

contains a constant, denoted 𝑎, number of nodes with overwhelming probability, ensuring the

mechanism operates in constant time with high probability.

We will formally show that our robust skip list is secure via a number of intermediary

lemmas. The first of which proves a necessary condition for degenerating a skip list (including our

robust version). We specifically analyze the skip list from the point of view of being able to have

infinite height (we rectify this with reality before delivering our final result). One examines the set

of elements that appear in the skip list strictly below level 𝐿 (𝑛) = log1/𝑝 (𝑛), where 𝑛 is the

number of (“deleted” or actual) elements in the skip list (i.e., its implied capacity), and the set of

elements that appear at or above level 𝐿 (𝑛).

125

We first relate the length of a search path (i.e., the number of nodes to be visited) to the

maximal width 𝑤 on each level below 𝐿 (𝑛), where the maximal width describes the maximal

number of level 𝑖 elements between level 𝑖 + 1 elements in the skip list over all levels

𝑖 = 0, 1, . . . , 𝐿 (𝑛) − 1. Here, we call an element a level 𝑖 element if the node’s height is at least 𝑖.

In particular, any level 𝑗 element is also a level 𝑖 element for 𝑖 ≤ 𝑗 . We say that the element is a

max-level 𝑖 element if it is a level 𝑖 element but not a level 𝑖 + 1 element.

Lemma 5-1 (Necessary Condition for Degenerating a Skip List). Consider a skip list for

parameter 𝑝 ∈ (0, 1) holding 𝑛 elements (possibly inserted by an adaptive adversary). If on all

levels 𝑖 ∈ {0, 1, . . . , 𝐿 (𝑛) − 1} the number of level 𝑖 elements between any pair of level 𝑖 + 1

elements is at most 𝑤, then any search path is of length at most 2𝑤 log1/𝑝 𝑛, or the total number of

elements on or above level 𝐿 (𝑛) exceeds 𝑤 log1/𝑝 𝑛.

The lemma states that, for the adversary to create a bad skip-list representation, it may either

hope that many elements are assigned a height beyond 𝐿 (𝑛)—which is very unlikely since the

heights are determined faithfully by the data structure—or it must ensure that there is a

“degenerated” sub-lists exceeding the width 𝑤 on some level. The latter matches our gap attack in

Section 5.5.1, where we followed this strategy, and the lemma states that this is indeed the only

valid attack strategy.

Proof. Assume that on all levels 𝑖, there exists at most 𝑤 elements between any two elements on

level 𝑖 + 1, and that the total size of the skip list on or above level 𝐿 (𝑛) is at most 𝑤 log1/𝑝 𝑛. Then

the search path below level 𝐿 (𝑛) is at most 𝑤 log1/𝑝 𝑛 because whenever we descend to a level 𝑖

(and the index to be searched is thus between the indexes of both level 𝑖 + 1 elements), we make at

most 𝑤 steps on the level 𝑖. This bounds the total number of steps on all levels 𝑖 below 𝐿 (𝑛) by

𝑤 · 𝐿 (𝑛) = 𝑤 · log1/𝑝 𝑛. In addition, on level 𝐿 (𝑛) or above, the total number of elements is

bounded by 𝑤 log1/𝑝 𝑛, such that even searching all these elements cannot increase the overall

number of inspected elements by more than 𝑤 log1/𝑝 𝑛. This yields an overall length of the search

part of 2𝑤 log1/𝑝 𝑛. □

126

We formulate the following game to bound the number of elements on max-level 𝑖 between

two level 𝑖 + 1 elements for the robust skip list. We assume that the adversary can insert as many

elements as they like (up to its insertion limit 𝑞𝑈) and that the adversary can insert into any gap

arbitrarily many times. Further, observe that the adversary cannot influence the height of any

particular element or alter the heights that were chosen by deletion due to our special deletion

method. Then, the ability of the adversary to accrue elements that exist on level 𝑖 between two

level 𝑖 + 1 elements distills down to a coin-flipping game.

Given the number of individual trials 𝑛 and probability 𝑝, the game is as follows. For each

individual trial, a coin (that is heads with probability 𝑝 and is tails with probability 1 − 𝑝) is

flipped until a tail appears, at which point the particular trial is concluded. The outcome of a trial

is the total number of heads that occurred during a particular trial. For instance, the outcome tails

maps to 0, while the outcome heads, heads, tails maps to 2.

The game keeps a sequence of all the outcomes. Say the sequence at a point in time 𝑡 − 1

is 𝑜1, 𝑜2, . . . , 𝑜𝑡−1. The adversary is allowed to run the next trial 𝑡 anywhere within the sequence.

That is, they could dictate the outcome of trial 𝑡 (the result of which they do not control, as coin

flips determine this) at the beginning of the sequence (before 𝑜1), at the end of the sequence

(after 𝑜𝑡−1), or anywhere in between two adjacent 𝑜𝑖−1, 𝑜𝑖, 𝑖 ≤ 𝑡 − 1. The trial is then run, the

outcome recorded in the sequence, and the sequence relabeled (depending on where the adversary

decided to place the outcome of the most recently run trial).

For each possible trial outcome, we have the following “halving” behavior concerning runs

(consecutive subsequences) of outcome 𝑖 for each 𝑖 ∈ {0, 1, . . . log1/𝑝 (𝑛)}. If the adversary is

trying to extend a particular run, they always insert it at the beginning or end of the run. By

inspection of our robust skip list structure, this strategy is optimal, as it maximizes the probability

of extending a particular run (by minimizing the probability of halving). Given this, when an

adversary tries to extend a run of outcome 𝑖, three possible outcomes can occur:

1. if the outcome of this fresh trial is 𝑖, then the run extends by length 1;

127

2. if the outcome of this trial is 𝑖 + 1; the length of the run is halved (or more precisely, the

updated run length is the ceiling of dividing the previous run length by 2);

3. if the outcome of the fresh trial is any other outcome; the run length remains the same.

Observe that this is precisely equivalent to the procedure for an adaptive adversary inserting

elements into our robust skip list with probability parameter 𝑝 and insertion budget (skip list

capacity) 𝑛 = 𝑞𝑈 . We specifically consider the scenario where the adversary tries to accrue

elements that exist on level 0 between two level 1 elements. This is because the probability of the

accruing elements on this level is maximized. Looking ahead, we will cast this run width accruing

game as a stochasic process that is supermartingale, generalize our result for level 0 to all

levels 𝑖 ∈ {0, 1, . . . , log1/𝑝 (𝑛) − 1}, and combine them to get a bound on the maximum search

path cost over the entire robust skip list.

Lemma 5-2 (Bounding Layer Sequential Elements for the Robust Skip List). Denote𝑊𝑖 the

random variable describing the maximum sequence of elements that exist on max-layer 𝑖 between

two level 𝑖 + 1 elements for 𝑖 ∈ {0, 1, . . . , log 1/𝑝(𝑛) − 1} for a robust skip list. For 𝜖 > 0 and

𝑎 =
2(1+𝑝)
𝑝

let𝑊 be the event that there exists𝑊𝑖 > 𝑎(1 + 𝜖) for some 𝑖 ∈ {0, 1, . . . , 𝐿 (𝑛) − 1}, then

Pr[𝑊] ≤ 𝑒(𝜆∗𝑎)−(𝜖𝜆∗𝑎) ,

where 𝜆∗ is the maximal solution 𝜆 > 0 to

(1 − 𝑝)𝑒𝜆 + 𝑝(1 − 𝑝)𝑒−𝜆
(

1
𝑝
+ 𝑎2

)
+ 𝑝2 ≤ 1.

Proof. Defining the Probabilistic Process. We begin by considering the adversary trying to

accrue a run of outcome 0. Given the adversary can play many independent trials, indexed by

integer 𝑡 (and in reality bounded by 𝑛 = 𝑞𝑈), we define a counter tracking the run length 𝑋𝑡 ,

initialized to 0, that is updated as follows:

128

𝑋𝑡+1 =



𝑋𝑡 + 1 with probability 1 − 𝑝⌈
𝑋𝑡
2

⌉
with probability 𝑝(1 − 𝑝)

𝑋𝑡 with probability 1 − ((1 − 𝑝) + 𝑝(1 − 𝑝) = 𝑝2

For 𝑋𝑡 = 𝑥,

E[𝑋𝑡+1 |𝑋𝑡 = 𝑥] = (1 − 𝑝) (𝑥 + 1) + 𝑝(1 − 𝑝) (𝑥
2
+ 1) + 𝑝2𝑥

=

(
(1 − 𝑝) + 𝑝(1 − 𝑝)

2
+ 𝑝2

)
𝑥 + (1 − 𝑝) + 𝑝(1 − 𝑝)

=

(
1 − 𝑝

2
+ 𝑝

2

2

)
𝑥 + 1 − 𝑝2,

where we approximate
⌈
𝑥
2
⌉

as 𝑥
2 + 1.

Setting 𝐴 =

(
(1 − 𝑝) + 𝑝(1−𝑝)

2 + 𝑝2
)

and 𝐷 = 1 − 𝑝2, we can solve for a fix point (i.e., the

steady-state solution where the drift is zero) by solving 𝑎 = 𝐴𝑎 + 𝐷 = 𝑎(1 − 𝐴) = 𝐷:

𝑎 =
𝐷

1 − 𝐴 =
1 − 𝑝2

𝑝(1−𝑝)
2

=
2(1 + 𝑝)

𝑝
.

Therefore, for any, 𝑝 the fixed point is 𝑎 =
2(1+𝑝)
𝑝

.

Bounding the Process for Outcome 0. We next cast this process as martingale to be able to

apply a concentration bound. Specifically, for trying to accrue a run of outcome 0, we define the

process

𝑀𝑡 = 𝑒
(𝜆(𝑋𝑡−𝑎)) ,

where 𝜆 > 0 is a parameter to be selected. Our goal is to show that when 𝑋𝑡 exceeds a

certain threshold (say 𝑥 ≥ 𝑎 + 𝐵 for some constant 𝐵 > 0), the process 𝑀𝑡 is supermartingale.

That is for all 𝑥 ≥ 𝑎 + 𝐵,E[𝑀𝑡+1 |𝑋𝑡 = 𝑥] ≤ 𝑀𝑡 .

129

Using the update rule for our process, we have for 𝑋𝑡 = 𝑥:

E[𝑀𝑡+1 |𝑋𝑡 = 𝑥] = (1 − 𝑝)𝑒𝜆((𝑥+1)−𝑎)+𝑝(1−𝑝)𝑒
𝜆 ((𝑥/2+1)−𝑎)+𝑝2𝑒𝜆(𝑥−𝑎)

= 𝑒𝜆(𝑥−𝑎)
(
(1 − 𝑝)𝑒𝜆 + 𝑝(1 − 𝑝)𝑒𝜆(1−𝑥/2) + 𝑝2

)
.

Observe that since the term 𝑒𝜆1−𝑥/2 decreases in 𝑥, the worst case for 𝑥 ≥ 𝑎 + 𝐵 is exactly

at 𝑥 = 𝑎 + 𝐵. Hence, it suffices to have

(1 − 𝑝)𝑒𝜆 + 𝑝(1 − 𝑝)𝑒𝜆(1−𝑎+𝐵/2) + 𝑝2 ≤ 1

for our stochastic process to satisfy the supermartingale condition.

Further, we have 𝑎+𝑏
2 =

1+𝑝
𝑝
+ 𝐵

2 and 1 − 𝑎+𝐵
2 = − 1

𝑝
− 𝐵

2 , thus, our condition simplifies to

(1 − 𝑝)𝑒𝜆 + 𝑝(1 − 𝑝)𝑒−𝜆
(

1
𝑝
− 𝐵2

)
+ 𝑝2 ≤ 1.

For any fixed 𝑝 ∈ (0, 1) and chosen 𝐵 > 0 (in practice we chose 𝐵 to be a small constant

that is ≈ 𝑎), one can solve for that largest 𝜆 that satisfies this inequality; denote this 𝜆∗ = 𝜆(𝑝, 𝐵).

Now, define a stopping time

𝑡0 = min{𝑡 ≥ 0 : 𝑋𝑡 ≥ 𝑎 + 𝐵}.

At this stopping time, we have

𝑀𝑡0 = 𝑒
𝜆∗ (𝑋𝑡0−𝑎) ≤ 𝑒𝜆∗𝐵,

as 𝑋𝑡0 ≥ 𝑎 + 𝐵. We then work with the stopped process 𝑀𝑡∧𝑡0 (or more precisely with the process

from time 𝑡0 onward) and apply Ville’s inequality [95]. This yields for all 𝑘 ≥ 0

Pr
[

max
0≤𝑡0≤𝑛

𝑋𝑡 ≥ 𝑎 + 𝑘
]
≤

E[𝑀𝑡0]
𝑒𝜆
∗𝑘
≤ 𝑒𝜆∗𝐵𝑒−𝜆∗𝑘 .

130

Define 𝐶 = 𝑒𝜆
∗𝐵, we then obtain the concentration bound for outcome 0 for all 𝑘 ≥ 0:

Pr[𝑋𝑛 ≥ 𝑎 + 𝑘] ≤ 𝐶𝑒−𝜆
∗𝑘 .

Recasting in the multiplicative form (as (1 + 𝜖)𝑎 = 𝑎 + 𝜖𝑎), for any 𝜖 > 0 we have

Pr[𝑋𝑡 ≥ (1 + 𝜖)𝑎] ≤ 𝐶𝑒−𝜆
∗𝜖𝑎 .

Lifting Result to All Outcomes. Next, we use a chaining argument to lift our result to the

maximum over all outcomes 𝑗 ∈ {0, 1, . . . , log1/𝑝 (𝑛) − 1}.

Let 𝑋 (𝑗)𝑛 denote the run length process for outcome

𝑗 ∈ {0, 1, . . . , log1/𝑝 (𝑛) − 1}. Observe that the probability of outcome 𝑗 is 𝑝 𝑗 (1 − 𝑝) and

the outcome 𝑗 + 1 is 𝑝 𝑗+1(1 − 𝑝). Thus, the ratio is

𝑝 𝑗 (1 − 𝑝)
𝑝 𝑗+1(1 − 𝑝)

=
1
𝑝
,

which is independent of 𝑗 . In turn, the fixed point 𝑎 =
2(1+𝑝)
𝑝

is identical (up to a constant additive

error) for every outcome 𝑗 . Therefore, for each 𝑗 , we have

Pr
[

max
0≤𝑡0≤𝑛

𝑋
(𝑗)
𝑡 ≥ 𝑎 + 𝑘

]
≤ 𝐶𝑒−𝜆∗𝑘 .

A naive union bound would suggest

Pr
[

log1/𝑝 (𝑛)−1
max
𝑗=0

max
0≤𝑡0≤𝑛

𝑋
(𝑗)
𝑡 ≥ 𝑎 + 𝑘

]
≤ log1/𝑝 (𝑛)𝐶𝑒−𝜆

∗𝑘 .

However, using a standard chaining and peeling argument [96] we can show that in fact,

there exist constants 𝐶′, 𝜆′ > 0 (depending only on 𝑝) such that

Pr
[

log1/𝑝 (𝑛)−1
max
𝑗=0

max
0≤𝑡0≤𝑛

𝑋
(𝑗)
𝑡 ≥ 𝑎 + 𝑘

]
≤ 𝐶′𝑒−𝜆

′
𝑘 ,

131

or equivalently, for any 𝜖 > 0,

Pr
[

log1/𝑝 (𝑛)−1
max
𝑗=0

max
0≤𝑡0≤𝑛

𝑋
(𝑗)
𝑡 ≥ (1 + 𝜖)𝑎

]
≤ 𝐶′𝑒−𝜆

′
𝜖𝑎 .

In practice, we simply take 𝐶′ ≈ 𝐶 and 𝜆′ ≈ 𝜆∗ = 𝜆(𝑝, 𝐵) (the same constants as above for

outcome 0), as there is at most a negligible difference between the bound for different outcomes

in {0, 1, . . . , log1/𝑝 (𝑛) − 1} and the bound is maximized at outcome 0. Then, by choosing 𝐵 = 𝑎,

we obtain our result in the lemma. □

Lemma 5-3 (Overall Robust Skip List Search Path Cost). For 𝜖 > 0 and 𝑎 =
2(1+𝑝)
𝑝

, let 𝑆 be the

total search path cost of the robust skip list, , then

Pr[𝑆 ≥ 𝑎(1 + 𝜖) log1/𝑝 (𝑛)] ≤ 𝑒(𝜆
∗𝑎)−(𝜖𝜆∗𝑎) ,

where 𝜆∗ is the maximal solution 𝜆 > 0 to

(1 − 𝑝)𝑒𝜆 + 𝑝(1 − 𝑝)𝑒−𝜆
(

1
𝑝
+ 𝑎2

)
+ 𝑝2 ≤ 1.

Proof. The lemma directly follows from Lemma 5-2, and the fact that

𝑆 =

log1/𝑝 (𝑛)∑︁
𝑗=0

𝑋 (𝑗)

≤
log1/𝑝 (𝑛)∑︁
𝑗=0

𝑚𝑎𝑥
log1/𝑝 (𝑛)−1
𝑗=0 max

0≤𝑡0≤𝑛
𝑋
(𝑗)
𝑡 .

□

Next, we bound the number of elements in a skip list above level 𝐿 (𝑛) = log1/𝑝 (𝑛),

addressing the second point in Lemma 5-1.

Lemma 5-4 (Bound on the Size of the list Above Level 𝐿 (𝑛)). Given a (robust) skip list with

probability parameter 𝑝, let 𝐻 be the number of elements that appear at

132

heights ≥ 𝐿 (𝑛) = log1/𝑝 (𝑛). That is, 𝐻 counts the total occurrences of elements at or above

height 𝐿 (𝑛) resp. the total size of the skip list at or above height 𝐿 (𝑛). Then,

E[𝐻] = 1
1 − 𝑝 ,

and

Pr
[
𝐻 ≥ 𝑤 · log1/𝑝 (𝑛)

]
≤ 𝑒−

((1−𝑝)𝑤 log1/𝑝 (𝑛)−1)2

(1−𝑝) (2+(1−𝑝)𝑤 log1/𝑝 (𝑛)−1) .

Proof. Let 𝐻𝑖 ∼ Bin(𝑛, 𝑝𝑖) denote the random variable describing the number of elements on

level 𝑖 among the 𝑛 elements, such that E[𝐻𝑖] = 𝑛𝑝𝑖. Let 𝐻 =
∑
𝑖≥𝐿 (𝑛) 𝐻𝑖 be the total number of

times an element appears at some level in all levels above level 𝐿 (𝑛) = log1/𝑝 (𝑛). Then,

E[𝐻] =
∑︁
𝑖≥𝐿 (𝑛)

𝑛𝑝𝑖 = 𝑛𝑝𝐿 (𝑛)
∑︁
𝑗≥0

𝑝 𝑗 = 𝑛𝑝𝐿 (𝑛)
1

1 − 𝑝 .

Now, observe that 𝑝𝐿 (𝑛) = 𝑝log1/𝑝 (𝑛) = 𝑛log1/𝑝 𝑝 = 𝑛−1, in turn 𝑛𝑝𝐿 (𝑛) = 𝑛 · 𝑝𝐿 (𝑛) = 𝑛 · 1
𝑛
= 1.

Therefore, the expected number of elements that appear at any level on or above level 𝐿 (𝑛) is

E[𝐻] = 1
1 − 𝑝 .

We then obtain a tail bound via the standard Chernoff bound, solving for a value 𝛿3 such

that (1 + 𝛿)
(

1
1−𝑝

)
= 𝑤 log1/𝑝 (𝑛). This completes the proof. The value 𝛿 = (1 − 𝑝)𝑤 log1/𝑝 (𝑛) − 1

works, and we get the upper bound of exp
(
− 𝛿2

(1−𝑝) (2+𝛿)

)
. □

In our robust skip list, we define a maximum level 𝑚. This, in turn, defines the capacity of

the list 𝑛 by solving 𝑚 = log1/𝑝 (𝑛) = 𝐿 (𝑛). So, in reality, this result actually reflects the maximum

number of elements on level 𝐿 (𝑛). To win in our game, the adversary must either craft a structure

such that the total search path cost below level 𝐿 (𝑛) exceeds 𝑤 log1/𝑝 (𝑛) or the above “bad” event

3Here 𝛿 refers to the usual difference from the mean in the Chernoff bound, not the parameter of the AAPC security
notion.

133

happens where there exists more than 𝑤 log1/𝑝 (𝑛) elements on level 𝐿 (𝑛). Combining these

results gives us the following theorem.

Theorem 5-2 (Robust Skip List AAPC Security Result). Let Π be the robust skip list from

Figure 5-10 with parameters 𝑝 ∈ [0, 1] and 𝑚 = log1/𝑝 (𝑞𝑈). For integers 𝑞𝑈 , 𝑞𝑄 , 𝑡 ≥ 0, it holds

that Π is (𝜙, 𝛽, 𝜖, 𝛿, 𝑡)-conserved with 𝜙 being the Maximum Search Path Cost function

(Figure 5-7), 𝛽 = 𝑐 log1/𝑝 (𝑛), 𝜖 > 0, and

𝛿 = 𝑒(𝜆
∗𝑎)−(𝜖𝜆∗𝑎) + 𝑒−

((1−𝑝)𝑎 log1/𝑝 (𝑛)−1)2

(1−𝑝) (2+(1−𝑝)𝑎 log1/𝑝 (𝑛)−1) ,

where 𝑎 =
2(1+𝑝)
𝑝

, 𝑐 = 𝑎(𝜖 + 1), and 𝜆∗ is the maximal solution 𝜆 > 0 to

(1 − 𝑝)𝑒𝜆 + 𝑝(1 − 𝑝)𝑒−𝜆
(

1
𝑝
+ 𝑎2

)
+ 𝑝2 ≤ 1.

Proof. The theorem directly follows from the observation deletions do not help the adversary (as

in Theorem 5-1) and Lemma 5-1, Lemma 5-3, and Lemma 5-4. □ □

To give a concrete illustration of this bound, suppose we had 𝑛 = 232, 𝑝 = 1
2 . Then our fixed

point 𝑎 = 6, and solving for 𝜆∗ numerically yields 𝜆∗ ≈ 0.34. Then, choosing 𝜖 = 8 (hence,

𝑐 = 54), the probability that the maximum search cost path exceeds 2 ∗ 𝑐 log1/𝑝 (𝑛) = 108 log1/𝑝 (𝑛)

is less than or equal to 𝛿 ≈ 6.28 × 10−7. While a constant 2𝑐 = 108 may appear large, consider

that, 𝜆∗ solely depends on 𝑝. In turn, for any fixed 𝜖 this bound is constant as 𝑛→∞, showing

that our adaptive search path is indeed 𝑂 (log 𝑛). We further, remark that this constant is likely

“artificially” large, in the sense that the stochastic process we bound is complex, leaving us only to

be able to use blunt Markov-like concentration bounds.

5.5.3 Robust Skip Lists in Real World Deployments

Skip lists, like hash tables, have an explicit capacity for a set number of elements and require

resizing when exceeded. While skip lists do not require upfront memory allocation, they require

setting a maximum node height of 𝑚 = log 1
𝑝
𝑛 for expected 𝑛 insertions. Exceeding 𝑛 insertions

134

necessitates resizing as the probabilistic guarantees otherwise deteriorate [33]. Our security

analysis avoids considering attacks that trigger re-initialization by enforcing 𝑚 = log 1
𝑝
𝑞𝑈 / We

now evaluate how our modifications affect resizing frequency in practice.

Standard skip lists with 𝐼 successful insertions and 𝐷 successful deletions require resizing

when log 1
𝑝
(𝐼 − 𝐷) > 𝑚. Previously, structures could operate indefinitely without resizing if

insertion and deletion rates remained balanced. Our modified structure, which merely marks

elements as ”deleted” without allowing replacement, requires resizing when log 1
𝑝
(𝐼) > 𝑚

regardless of remaining elements. This allows adversaries to trigger early resizing by inserting

approximately
(

1
𝑝

)𝑚
elements, deleting most, then forcing a resize with few additional insertions.

Unlike hash tables, we cannot replace deleted nodes without creating a security

vulnerability where adversaries could manipulate the skip list by strategically deleting elements

and inserting new ones, effectively repositioning unfavorable heights in other parts of the skip list

– essentially enhancing our gap attack. While our approach requires more frequent resizing, this

represents an essential trade-off ensuring provable robustness against adaptive adversarial attacks

while preserving expected performance characteristics.

5.6 Robust Treaps

5.6.1 (In)Security of the Standard Treap

Unlike other probabilistic data structures in this study, treaps (without deletions)

demonstrate intrinsic security against search path cost blow-up. However, adaptive adversaries

can still mount attacks that force certain elements to be near the root with high probability.

Consider a lottery system designed to select a number of winners with uniform probability

from a participant pool. Imagine, the implementation uses a treap data structure with an in-order

traversal limited to a constant path length, thereby theoretically ensuring equal selection

probability for all participants.

However, this implementation contains a critical security vulnerability against adaptive

adversaries. While attackers cannot directly manipulate the random priority values assigned to

entries, they can execute a more sophisticated attack by strategically inserting elements with

135

carefully chosen keys positioned adjacent to a target element. By continuing this insertion pattern

until placing an element with exceptionally low priority, they force the treap to perform rotation

operations that elevate their target element toward the root. Since elements closer to the root are

more likely to be selected during the limited-depth traversal, this compromises the lottery’s

fairness.

Concretely, let 𝑥1, 𝑥2, . . . , 𝑥 𝑗−1 be the keys inserted in sorted order with associated priorities

𝑟𝑥1 , 𝑟𝑥2 , . . . , 𝑟𝑥 𝑗−1 ,

drawn independently from the uniform distribution on [0, 1]. An adaptive adversary selects an

arbitrary target element 𝑥𝑖. The adversary then repeatedly inserts new elements into the gaps

between 𝑥𝑖 and 𝑥𝑖+1 and between 𝑥𝑖−1 and 𝑥𝑖 until obtaining an exceptionally low priority value.

This is expected to occur after a linear number of insertions.

After inserting, let 𝑆𝑛𝑥𝑖 denote the search path to 𝑥𝑖. Since

𝑆𝑛𝑥𝑖 = |{records in sequence 𝑟𝑥𝑖 , 𝑟𝑥𝑖−1 , . . . , 𝑟𝑥1}|+

|{records in sequence 𝑟𝑥𝑖 , 𝑟𝑥𝑖+1 , . . . , 𝑟𝑥𝑛}| − 1,

and the number of records in these intervals is constant (as the neighboring elements to 𝑥𝑖 have

exceptionally low priorities for which there exists only a constant number of nodes with lower

priorities), 𝑥𝑖 now resides near the top of the treap with high probability.

Importantly, for our purposes, treaps maintain their expected 𝑂 (log 𝑛) operational

complexity against adaptive adversaries only when our modified deletion procedure is applied.

Without it, an adversary could simply re-insert (and delete) an element until obtaining a favorable

priority, making degeneration attacks trivial.

This resistance to performance degradation attacks under lazy deletion represents a

significant finding, as all other PSDS examined proved vulnerable. The treap’s rebalancing

136

mechanism, based on previously sampled priorities, provides a natural defense against malicious

attempts to create operation sequences that would otherwise lead to worst-case runtime scenarios.

5.6.2 A Robust Construction

We give a pseudocode description of the robust treap using our modified deletion procedure

in Figure 5-12. We will formally show the security (with regard to the maximal search path) of

our modified-deletion treap. However, we first formalize a view of the treap’s representation via a

stochastic process. We start by analyzing the representation formed by a non-adaptive adversary

and the subsequent maximum search path cost.

Consider a treap containing 𝑛 elements inserted by a non-adaptive adversary, i.e., selected

uniformly at random from the universe of all possible elements. Consider all inserted elements in

the sorted order of their key value 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛. Each key 𝑥𝑖 is assigned a random

priority 𝑟𝑥𝑖 drawn independently from the uniform distribution on [0, 1].

Let 𝑆𝑛𝑥𝑖 denote the random variable representing the search path length for a fixed element 𝑥𝑖.

The search path to element 𝑥𝑖 consists of all ancestors of 𝑥𝑖 in the treap structure. From Aragon

and Seidel [90], 𝑥 𝑗 is an ancestor of 𝑥𝑖 if and only if 𝑥 𝑗 has the lowest priority among all elements

between 𝑥𝑖 and 𝑥 𝑗 (inclusive). Specifically:

• If 𝑗 > 𝑖, then 𝑥 𝑗 is an ancestor of 𝑥𝑖 if and only if 𝑟𝑥 𝑗 = min{𝑟𝑥𝑖 , 𝑟𝑥𝑖+1 , . . . , 𝑟𝑥 𝑗 }

• If 𝑗 < 𝑖, then 𝑥 𝑗 is an ancestor of 𝑥𝑖 if and only if 𝑟𝑥 𝑗 = min{𝑟𝑥 𝑗 , 𝑟𝑥 𝑗+1 , . . . , 𝑟𝑥𝑖 }

This means that an element is an ancestor of 𝑥𝑖 precisely when its priority is a minimum

value – what we will refer to as a ”record” – in one of two sequences extending from 𝑥𝑖. Hence,

we can interpret 𝑆𝑛𝑥𝑖 as:

𝑆𝑛𝑥𝑖 = |{records in sequence 𝑟𝑥𝑖 , 𝑟𝑥𝑖−1 , . . . , 𝑟𝑥1}|+

|{records in sequence 𝑟𝑥𝑖 , 𝑟𝑥𝑖+1 , . . . , 𝑟𝑥𝑛}| − 1,

137

where the subtraction of 1 accounts for 𝑥𝑖 being counted in both sequences.

A classical fact about random permutations is the behavior of records. For a sequence of 𝑘

i.i.d. uniformly distributed random variables, the probability that the 𝑗-th element is a record (i.e.,

it is less all 𝑗 − 1 preceding values is exactly 1
𝑗
). More precisely, define the following indicator

variables for a given sequence:

𝐼 𝑗 =


1, if the 𝑗-th element is a record,

0, otherwise.

Then we have E[𝐼 𝑗] = 1
𝑗
. For a sequence of length 𝑘 , the total number of records

is 𝑅𝑘 =
∑𝑘
𝑗=1 𝐼 𝑗 and its expectation is E[𝑅𝑘] =

∑𝑘
𝑗=1

1
𝑗
= 𝐻𝑘 , where 𝐻𝑘 is the 𝑘-th harmonic

number. In our context, when considering the “leftward” sequence of priority values 𝐿𝑖 (of

length 𝑖) and the “rightward” sequence if priority 𝑅𝑖 (of length 𝑛 − 𝑖 + 1) with respect to key at

index 𝑖, we have E[𝐿𝑖] = 𝐻𝑖 and E[𝑅𝑖] = 𝐻𝑛−𝑖+1.

Thus, for a fixed 𝑥𝑖,

E[𝑆𝑛𝑥𝑖] = E[𝐿𝑖 + 𝑅𝑖 − 1] = 𝐻𝑖 + 𝐻𝑛−𝑖+1 − 1.

Nothing, that for any 𝑖 it must be that 𝐻𝑖 ≤ 𝐻𝑛 and 𝐻𝑛−𝑖+1 ≤ 𝐻𝑛, and the well known

fact 𝐻𝑛 ≤ ln(𝑛) + 1, we have

E[𝑆𝑛𝑥𝑖] ≤ 2𝐻𝑛 − 1

≤ 2 ln(𝑛) + 1.

We next argue that even when an adaptive adversary determines the insertions, each inserted

element’s probability of forming a record remains exactly 1
𝑗

when it is the 𝑗-th element inserted –

exactly the same as the non-adaptive case. Even though an adaptive adversary can observe all

previous outcomes and choose the next element adaptively (that is, select the key value so it falls

138

into any “gap” of existing key values, like in the case of the skip list in Section 5.5), the new

priority is still drawn uniformly and independently from [0, 1]. The joint distribution of the prior

priorities is unchanged. We formalize this idea in the following lemma.

Lemma 5-5 (Invariant Record Probability under Adaptive Insertion). Let 𝑥1, 𝑥2, . . . , 𝑥 𝑗−1 be the

keys inserted in sorted order with associated priorities

𝑟𝑥1 , 𝑟𝑥2 , . . . , 𝑟𝑥 𝑗−1 ,

drawn independently from the uniform distribution on [0, 1]. An adaptive adversary (chooses a

gap (i.e., a position between any two or before/after these keys) into which to insert a new key 𝑥 𝑗 .

The new key receives an independent priority 𝑟𝑥 𝑗 ∼ U[0, 1]. After relabeling the keys according to

their inherent order, let the sorted sequence of priorities (of all 𝑗 keys) be

𝑟 (1) ≤ 𝑟 (2) ≤ · · · ≤ 𝑟 (𝑗) .

Then, even conditioned on the past 𝜎-algebra F𝑗−1 (which contains the ordered priority

values and all adversarial decisions regarding the first 𝑗 − 1 insertions), we have

Pr
(
𝑟𝑥 𝑗 = 𝑟 (1)

���F𝑗−1

)
=

1
𝑗
.

Proof. Condition on the 𝜎-algebra F𝑗−1; that is, assume the priorities

𝑟𝑥1 , 𝑟𝑥2 , . . . , 𝑟𝑥 𝑗−1

are fixed and rearranged in increasing order:

𝑟 (1) ≤ 𝑟 (2) ≤ · · · ≤ 𝑟 (𝑗−1) .

139

An adaptive adversary may insert the new key 𝑥 𝑗 in any gap between any two keys in the

current sequence (or before the smallest or after the largest). Still, such a decision affects only the

position of the key in the key order and does not alter the statistical properties of the newly drawn

priority.

The new priority 𝑟𝑥 𝑗 is drawn independently from U[0, 1]. Thus, when the new key is

inserted, the complete set of 𝑗 priorities is

{𝑟𝑥 𝑗 , 𝑟 (1) , 𝑟 (2) , . . . , 𝑟 (𝑗−1)}.

Since the first 𝑗 − 1 values are already fixed and 𝑟𝑥 𝑗 is independent and uniformly distributed

over [0, 1], the resulting set of 𝑗 priorities is exactly equivalent to a set of 𝑗 independent uniform

samples upon relabeling.

In any sequence of 𝑗 i.i.d. U[0, 1] random variables, symmetry implies that the probability

that any particular one (here, the newly inserted element) is the minimum is exactly 1/ 𝑗 .

Formally, we have

Pr
(
𝑟𝑥 𝑗 = min{𝑟𝑥 𝑗 , 𝑟 (1) , 𝑟 (2) , . . . , 𝑟 (𝑗−1)}

���F𝑗−1

)
=

1
𝑗
.

Thus, regardless of where the adversary chooses to insert 𝑥 𝑗 , the probability that 𝑥 𝑗 is a

record (i.e., its priority is the smallest among the first 𝑗 keys) remains equal to 1/ 𝑗 , as in the

non-adaptive setting. □

Theorem 5-3 (Treap AAPC Result). Let Π be the robust treap from Figure 5-12. For

integers 𝑞𝑈 , 𝑞𝑄 , 𝑡 ≥ 0, it holds that Π is (𝜙, 𝛽, 𝜖, 𝛿, 𝑡)-conserved with 𝜙 being the Maximum

Search Path Cost function (Figure 5-6), 𝛽 = 2 ln 𝑛 + 1, any 𝜖 > 0 and

𝛿 = 𝑛𝑒
− 𝜖 2𝐻𝑛

2(1+𝜖) ,

where 𝑛 = 𝑞𝑈 and 𝐻𝑛 is the 𝑛-th harmonic number.

140

Proof. Observe that deletions do not help the adversary, as by construction, they at most relabel

an existing entry and cannot possibly extend the longest path. Therefore, we consider a treap

of 𝑛 = 𝑞𝑈 keys (i.e., a treap with the maximal number of insertions made) built by an adaptive

adversary.

Casting the Insertion Process as a Doob Martingale.

For a fresh key inserted at step 𝑗 , take the indicator variable 𝐼 𝑗 as defined above. Then,

conditioned on the past 𝜎-algebra F𝑗−1 (which contains the ordered priority values and all

adversarial decisions regarding the first 𝑗 − 1 insertions), and letting

𝑚 𝑗−1 := min{𝑟𝑥1 , 𝑟𝑥2 , . . . , 𝑟𝑥 𝑗−1} (with 𝑚0 = 1),

it is easy to see that

Pr(𝐼 𝑗 = 1|F𝑗−1) = Pr(𝑟𝑥 𝑗 < 𝑚 𝑗−1 |F𝑗−1) = 𝑚 𝑗−1.

From Lemma 5-5, we have that even under adaptive insertions, the unconditional

expectation remains

E[𝑚 𝑗−1] =
1
𝑗
.

Then, if letting 𝑋𝑛 denote the total number of records over all 𝑛 insertions, the unconditional

expected number of records is

E[𝑋𝑛] =
𝑛∑︁
𝑗=1

E[𝐼 𝑗] =
𝑛∑︁
𝑗=1

1
𝑗
= 𝐻𝑛,

where 𝐻𝑛 is the 𝑛-th harmonic number.

From our above analysis, we have that the search path length 𝑆𝑛𝑥 for key 𝑥 is bounded in

terms of the number of records 𝑋𝑛 by

𝑆𝑥𝑛 ≤ 2𝑋𝑛 − 1.

141

Thus, if we can show that 𝑋𝑛 is concentrated around 𝐻𝑛, we also have a bound on the search

cost for a particular element. To do this, define the Doob martingale

𝑀 𝑗 =

𝑗∑︁
𝑖=1
(𝐼𝑖 − E[𝐼𝑖 |F𝑖−1]), 𝑗 = 0, 1, 2, . . . , 𝑛,

with 𝑀0 = 0. By construction, {𝑀 𝑗 } is a martingale relative to the filtration {𝐹𝑗 }.

Next, observe that the martingale difference satisfy

𝐷 𝑗 = 𝑀 𝑗 − 𝑀 𝑗−1 = 𝐼 𝑗 − E[𝐼𝑖 |F𝑖−1] .

Since 𝐼 𝑗 ∈ {0, 1} and E[𝐼𝑖 |F𝑖−1 ∈ [0, 1], we have |𝐷 𝑗 | ≤ 1.

Since 𝐼 𝑗 ∈ {0, 1} is a Bernoulli random variable with parameter 𝑚 𝑗−1, its conditional

expectation is

E[𝐼 𝑗 | F𝑗−1] = 𝑚 𝑗−1,

and the conditional variance is computed as:

Var(𝐼 𝑗 | F𝑗−1) = E
[
(𝐼 𝑗 − 𝑚 𝑗−1)2

��F𝑗−1

]
= 𝑚 𝑗−1(1 − 𝑚 𝑗−1).

Now, note that subtracting the constant E[𝐼 𝑗 | F𝑗−1] does not change the variance. That is,

Var(𝐷 𝑗 | F𝑗−1) = Var(𝐼 𝑗 − E[𝐼 𝑗 | F𝑗−1] | F𝑗−1)

= Var(𝐼 𝑗 | F𝑗−1)

= 𝑚 𝑗−1(1 − 𝑚 𝑗−1).

142

Thus, computing the predictable quadratic variation, we have

𝑉𝑛 =

𝑛∑︁
𝑗=1

Var(𝐷 𝑗 | F𝑗−1) =
𝑛∑︁
𝑗=1
𝑚 𝑗−1(1 − 𝑚 𝑗−1).

Since 𝑚 𝑗−1(1 − 𝑚 𝑗−1) ≤ 𝑚 𝑗−1 (because 1 − 𝑚 𝑗−1 ≤ 1 for all 𝑚 𝑗−1 ∈ [0, 1]), we obtain

𝑉𝑛 ≤
𝑛∑︁
𝑗=1
𝑚 𝑗−1.

Further, as 𝐸 [𝑚 𝑗−1] = 1
𝑗
, we have

E[𝑉𝑛] ≤
𝑛∑︁
𝑗=1

1
𝑗
= 𝐻𝑛.

Applying A Concentration Bound.

Freedman’s inequality [97] states that if {𝑀 𝑗 } is a martingale with a difference bounded

by 1 with predictable quadratic variation 𝑉𝑛, then for any 𝑎, 𝑏 > 0,

Pr(𝑀𝑛 ≥ 𝑎 and 𝑉𝑛 ≤ 𝑏) ≤ 𝑒−
𝑎2

2(𝑎+𝑏) .

We set 𝑏 = 𝐻𝑛 (as typically 𝑉𝑛 will not exceed 𝐻𝑛 by much) and chose 𝑎 = 𝜖𝐻𝑛,

where 𝜖 > 0 is our parameter from our security statement.

Then, Freedman’s inequality gives us

Pr(𝑀𝑛 ≥ 𝜖𝐻𝑛) ≤ 𝑒−
𝜖 2𝐻2

𝑛
2(𝜖 𝐻𝑛+𝐻𝑛) = 𝑒

− 𝜖 2𝐻𝑛
2(1+𝜖) .

Since

𝑋𝑛 =

𝑛∑︁
𝑗=1

𝐼 𝑗 = 𝑀𝑛 +
𝑛∑︁
𝑗=1

E[𝐼 𝑗 |F𝑗−1],

143

and
∑𝑛
𝑗=1 E[𝐼 𝑗 |F𝑗−1] has expectation 𝐻𝑛, the above inequality shows that with probability at

least 1 − 𝑒−
𝜖 2𝐻𝑛

2(1+𝜖) we have 𝑋𝑛 ≤ (1 + 𝜖)𝐻𝑛. Further, recalling that 𝑆𝑛𝑥 ≤ 2𝑋𝑛 − 1, this implies with

the same probability, 𝑆𝑛𝑥 ≤ 2(1 + 𝜖)𝐻𝑛 − 1.

Bounding the Search Cost Path Over All Elements.

Let 𝐸𝑥 be the event that the search path cost for a fixed element exceeds the

threshold 𝑇 = 2(1 + 𝜖) ln(𝑛) + 1.

From the above, we have that

Pr(𝐸𝑥) ≤ 𝑒−
𝜖 2𝐻𝑛

2(1+𝜖) ,

as 𝐻𝑛 ≤ 𝑙𝑛(𝑛) + 1.

Then, applying a standard union bound over all the 𝑛 elements in the treap, the event that

there exists some element with a search path cost exceeding 𝑇 is bounded by

Pr ©­«
⋃

𝑥∈{𝑥1,...,𝑥𝑛}
𝐸𝑥

ª®¬ ≤ 𝑛𝑒−
𝜖 2𝐻𝑛

2(1+𝜖) .

□

To give a concrete illustration of this bound, suppose we had 𝑛 = 232 and select 𝜖 = 5. Our

expected search path cost is 2 ln(232) + 1 ≈ 45.36, and leveraging our results from Theorem 5-3

the probability the maximum search cost path exceeds this by five times

is ≤ 𝛿 = 232 · 𝑒−
25𝐻232

12 ≈ 6.65 × 10−12.

5.6.3 Robust Treaps in Real World Deployments

Unlike hash tables and skip lists, treaps operate without an implicit maximum capacity and

typically don’t require resizing operations. However, our modified structure – which only marks

elements as “deleted” without allowing replacement – may still necessitate periodic treap

re-initialization to reclaim memory occupied by deleted elements. This limitation exists because

allowing the replacement of deleted nodes would create a security vulnerability, enabling

144

attackers to strategically shift unfavorable priorities to different parts of the treap. Similar to our

skip list approach, we cannot simply reuse deleted nodes without compromising security. While

this design choice increases maintenance overhead compared to standard treaps, it represents an

essential trade-off that ensures provable robustness against adversarial attacks while maintaining

the treap’s expected performance characteristics in adversarial environments.

5.7 Experimental Results

We conducted experiments to empirically validate our analytical results. Our first

experiment tested whether robust data structures offer benefits in non-adversarial settings. Using a

dataset of 10 million usernames [98], we randomly inserted 1,000 usernames into each data

structure. We measured performance by counting hops (forward movements between nodes). The

hash table’s load factor was limited to 0.7 [99], and the skip list’s maximum height was set to

𝑙𝑜𝑔2𝑛. We used Python’s built-in hash function, which is vulnerable to multi-collision attacks.

Results were averaged over 100 trials.

As shown in Figure 5-13, the robust skip list consistently required fewer mean and

maximum hops than its standard counterpart, demonstrating benefits even in non-adversarial

settings with only constant overhead. The robust hash table showed comparable performance to

the original structure. We benchmarked an unmodified treap implementation given its inherent

adversarial robustness.

Our second experiment evaluated performance under adaptive adversarial conditions. We

implemented a hash collision attack on hash tables and a gap attack on skip lists, averaging results

over 100 trials. Treaps were excluded due to their established inherent robustness.

For the hash collision attack, we pre-calculated bucket values to deliberately insert all

elements into a single bucket, creating worst-case conditions for standard hash tables. For the

robust implementation, we used a random key for pre-calculation, since the actual secret key

would be unknown to an attacker.

145

For the gap attack against skip lists, we tested two variants: a restricted version using the

same username dataset and an unrestricted version using integers within the range [0, 10100]4. We

report the top 1% of outcomes with respect to the maximum hop count.

Results in Figure 5-14 confirm that adversarial attacks significantly degrade standard

implementations, while robust counterparts maintain consistent performance. The robust skip list

maintained an average maximum hop count of 27.36, compared to 33.17 for the non-robust

implementation under non-adaptive conditions. Under adaptive settings, the non-robust

implementation degraded to 35.61 maximum average hops, and further to 202.71 hops when

using the larger integer range. This validation confirms our theoretical findings on adversarial

robustness, and also suggests that our remark regarding the artificial “looseness” of the bound

carries weight.

4While this serves primarily as a proof of concept, such a vast interval could realistically be achieved using a
20-character limit with Unicode encoding. We emphasize that significant runtime degradation can be observed even
with substantially smaller intervals.

146

Rep𝐾 (S)

1 : h← NewNode(𝑚,★)
2 : L.header← h, L.level← 1
3 : for (𝑥, 𝑣) ∈ S
4 : L← Up𝐾 (L, ins(𝑥,𝑣))
5 : return L

NewNode(ℓ, (𝑥, 𝑣))

1 : // array position 0 is reserved for a key, value pair (𝑥, 𝑣)

2 : // accessible via 𝑛.key and 𝑛.value

3 : // array positions 1 . . . ℓ are forward pointers

4 : // level is accessible via 𝑛.level

5 : node← new [0, .., ℓ]
6 : node[0] ← (𝑥, 𝑣)
7 : for 𝑖 ← ℓ downto 1 do
8 : node[𝑖] ← null
9 : return node

RandomLevel𝐾 (𝑥)

1 : ℓ ← 𝑅(𝐾, 𝑥, 𝑚, 𝑝)

2 : return ℓ
3 : ℓ ← 1, 𝑟 ←← [0, 1)
4 : while 𝑟 < 𝑝 and ℓ < 𝑚 do
5 : ℓ ← ℓ + 1, 𝑟 ←← [0, 1)
6 : return ℓ

Qry(L, qry𝑥)

1 : 𝑐 ← L.header
2 : for 𝑖 ← L.level downto 1 do
3 : while 𝑐[𝑖] ≠ null and 𝑐[𝑖] [0] .key < 𝑥 do
4 : 𝑐 ← 𝑐[𝑖]
5 : 𝑐 ← 𝑐[1]
6 : if 𝑐 ≠ null and 𝑐[0] .key = 𝑥 then
7 : return 𝑐[0] .value
8 : else
9 : return ★

Up𝐾 (L, ins(𝑥,𝑣))

1 : u← new [1, .., 𝑚] // local array of pointers

2 : 𝑐 ← L.header
3 : for 𝑖 ← L.level downto 1 do
4 : while 𝑐[𝑖] ≠ null and 𝑐[𝑖] [0] .key < 𝑥 do
5 : 𝑐 ← 𝑐[𝑖]
6 : 𝑢[𝑖] ← 𝑐

7 : 𝑐 ← 𝑐[1]
8 : if 𝑐 ≠ null and 𝑐[0] .key = 𝑥 then
9 : 𝑐[0] .value← 𝑣

10 : return L
11 : else
12 : ℓ ← RandomLevel𝐾 (𝑥)
13 : if ℓ > L.level then
14 : for 𝑖 ← L.level + 1 upto ℓ do
15 : u[𝑖] ← L.header
16 : L.level← ℓ

17 : n← NewNode(ℓ, (𝑥, 𝑣))
18 : for 𝑖 ← 1 upto ℓ do
19 : n[𝑖] ← u[𝑖] [𝑖], 𝑢[𝑖] [𝑖] ← n
20 : return L

Up(L, del𝑥)

1 : u← new [1, .., 𝑚] // local array of pointers

2 : 𝑐 ← L.header
3 : for 𝑖 ← L.level downto 1 do
4 : while 𝑐[𝑖] ≠ null and 𝑐[𝑖] [0] .key < 𝑥 do
5 : 𝑐 ← 𝑐[𝑖]
6 : 𝑢[𝑖] ← 𝑐

7 : 𝑐 ← 𝑐[1]
8 : if 𝑐 ≠ null and 𝑐[0] .key = 𝑥 then
9 : for 𝑖 ← 1 upto 𝑐.level do

10 : u[𝑖] [𝑖] ← 𝑐[𝑖] // free c

11 : while L.level > 1 and L.header[L.level] = null do
12 : L.level← L.level − 1
13 : return L

Figure 5-2. A possibly “deterministic” (and keyed) skip list structure SL[𝑅 , 𝑚, 𝑝] admitting insertions,
deletions, and queries for any 𝑥 ∈ U for some well-ordered universeU. The parameters are an
integer 𝑚 ≥ 0 representing the maximum level of the structure, a fraction 𝑝 ∈ (0, 1) used for
determining an element’s random level, and, if using the deterministic version of the structure,
a keyed function 𝑅 : K ×U × Z+ × (0, 1) → [𝑚] that maps an element to a level in accordance
with the distribution imposed by 𝑚 and 𝑝. A concrete scheme is given by a particular choice of
parameters. Subroutines used by the deterministic version of the structure appear in the boxed
environment. 147

Rep𝐾 (S)

1 : T.root← null
2 : for (𝑥, 𝑣) ∈ S do
3 : T← Up𝐾 (T, ins(𝑥,𝑣))
4 : return T

RandomPriority𝐾 (𝑥)

1 : 𝑝 ← 𝑅 (𝐾, 𝑥)

2 : return 𝑝

3 : 𝑝 ←← (0, 1)
4 : return 𝑝

NewNode((𝑥, 𝑣), 𝑝)

1 : // array position 0 is reserved for a key, value pair (𝑥, 𝑣)
2 : // accessible via 𝑛.key and 𝑛.value
3 : // array positions 2, 3 are child pointers and 1 is priority
4 : node← [(𝑥, 𝑣) , 𝑝, null, null]
5 : return node

Qry(T, qry𝑥)

1 : T.root← Qryrec (T.root, qry𝑥)
2 : return T

Qryrec(𝑐, qry𝑥)

1 : if 𝑐 = null then
2 : return★
3 : if 𝑐[0].key = 𝑥 then
4 : return 𝑐[0].key
5 : 𝑏← (𝑥 > 𝑐[0].key)
6 : return Qryrec (𝑐[2 + 𝑏], qry𝑥)

Rotate(𝑐, 𝑏)

1 : tmp← 𝑐[2 + 𝑏] [3 − 𝑏]
2 : 𝑐[2 + 𝑏] [3 − 𝑏] ← 𝑐

3 : 𝑐[2 + 𝑏] ← tmp
4 : return tmp

Up𝐾 (T, ins(𝑥,𝑣))

1 : T.root← Uprec
𝐾 (T.root, ins(𝑥,𝑣))

2 : return T

Uprec
𝐾
(𝑐, ins(𝑥,𝑣))

1 : if 𝑐 = null then

2 : 𝑝 ← RandomPriority𝐾 (𝑥)
3 : return NewNode((𝑥, 𝑣) , 𝑝)
4 : if 𝑐[0].key = 𝑥 then
5 : 𝑐[0].value← 𝑣

6 : return 𝑐
7 : 𝑏← (𝑥 > 𝑐[0].key)
8 : 𝑐[2 + 𝑏] ← Uprec

𝐾 (𝑐[2 + 𝑏], ins(𝑥,𝑣))
9 : // maintain MIN Heap property

10 : if 𝑐[1] > 𝑐[2 + 𝑏] [1] then
11 : 𝑐 ← Rotate(𝑐, 𝑏)
12 : return 𝑐

Up𝐾 (T, del𝑥)

1 : T.root← Uprec
𝐾 (T.root, del𝑥)

2 : return T

Uprec(𝑐, del𝑥)

1 : if 𝑐 = null then
2 : return null
3 : if 𝑐[0].key = 𝑥 then
4 : // Remove node
5 : if 𝑐[2] = null and 𝑐[3] = null then
6 : return null
7 : if 𝑐[2] = null then
8 : return 𝑐[3]
9 : if 𝑐[3] = null then

10 : return 𝑐[2]
11 : // Rotate node down before removing
12 : 𝑏← 𝑐[3] [1] > 𝑐[2] [1] then
13 : 𝑐 ← Rotate(𝑐, 𝑏)
14 : 𝑐[3 − 𝑏] ← Uprec

𝐾 (𝑐[3 − 𝑏], del𝑥)
15 : else
16 : 𝑏← (𝑥 > 𝑐[0].key)
17 : 𝑐[2 + 𝑏] ← Uprec

𝐾 (𝑐[2 + 𝑏], del𝑥)
18 : return 𝑐

Figure 5-3. A possibly “deterministic” (and keyed) MIN treap structure TR[𝑅] admitting insertions,
deletions, and queries for any 𝑥 ∈ U for some well-ordered universeU. The parameter is a
keyed function 𝑅 : K ×U → (0, 1) that assigns an element a random priority. Subroutines
used by the deterministic version of the structure appear in the boxed environment. Let
MinPrioChild(𝑐) denote the function that returns the child index (0 or 1) of node 𝑐 with the
minimum priority, or null if 𝑐 has no children.

148

Expaapc
Π,𝜙,𝛽,𝜖

(A)

1 : 𝑟 ← 0;𝐾 ←← K
2 : done←← ARep,Up,Qry

3 : return
[𝜙(𝐷, repr)
𝛽(P, |𝐷 |) ≥ 𝜖

]
Hash(𝑋)

1 : if 𝑋 ∉ X : return ⊥
2 : if 𝐻 [𝑋] = ⊥
3 : 𝑋 [𝑋] ←← Y
4 : return 𝐻 [𝑋]

Rep(𝐶)

1 : if 𝑟 = 1 : return ⊥
2 : 𝑟 ← 1
3 : repr←← Rep𝐾 (𝐶)
4 : 𝐷 ← 𝐶

5 : return repr

Up(up)

1 : repr←← Up𝐾 (repr, up)
2 : 𝐷 ← up(𝐷)
3 : return repr

Qry(qry)

1 : return Qry𝐾 (repr, qry)

Figure 5-4. The Adaptive Adversary Property Conservation (AAPC) security game. The experiment
enforces that the adversary is only able to call Rep once. The experiment returns the output of a
predicate that returns 1 iff the property function 𝜙(𝐷, repr) computed over the representation
the adversary interacts with is greater than 𝜖-times (for some 𝜖 > 0) larger than some target
bound 𝛽 (that only depends on the parameters of the structure P and the size of the represented
data object |𝐷 |). The Hash oracle computes a random mapping X → Y (i.e., a random oracle),
and is implicitly provided to Rep, Up and Qry as needed.

HT Maximum Search Path: 𝜙(𝐷, repr)

1 : 𝑒 ← 0
2 : for 𝑖 ← 1 to 𝑚
3 : ℓ ← length(𝑇 [𝑖])
4 : if ℓ > 𝑒
5 : 𝑒 ← ℓ

6 : return 𝑒

Figure 5-5. The HT Maximum Search Path function 𝜙 : D × {0, 1}∗ → R. The function iterates through all
𝑚 buckets, returning the bucket with the greatest population, which is equivalent to the longest
search path in the table.

149

TR Maximum Search Path: 𝜙(𝐷, repr)

1 : return 𝜙rec(T.root, 0)

𝜙rec(𝑛, 𝑒)

1 : if 𝑛 = null then
2 : return
3 : 𝑒1 ← 𝜙rec(𝑛[2], 𝑒 + 1)
4 : 𝑒2 ← 𝜙rec(𝑛[3], 𝑒 + 1)
5 : return max(𝑒1, 𝑒2)

Figure 5-6. The TR Maximum Search Path function 𝜙 : D × {0, 1}∗ → R. The function performs an
in-order traversal for all elements 𝑑 ∈ 𝐷, returning the longest search path cost among them.

SL Maximum Search Path: 𝜙(𝐷, repr)

1 : 𝑚 ← 0
2 : for 𝑑 ∈ 𝐷
3 : ℓ ← 0, 𝑐 ← L.header
4 : for 𝑖 ← L.level downto 1 do
5 : while 𝑐[𝑖] ≠ null and 𝑐[𝑖] [0] .key < 𝑑 do
6 : 𝑐 ← 𝑐[𝑖], ℓ ← ℓ + 1
7 : 𝑐 ← 𝑐[1], ℓ ← ℓ + 1
8 : if 𝑐 ≠ null and 𝑐[0] .key = 𝑑 then
9 : if ℓ > 𝑚 then

10 : 𝑚 ← ℓ

11 : return 𝑚

Figure 5-7. The SL Maximum Search Path functions 𝜙 : D × {0, 1}∗ → R. The function iterates through
all elements 𝑑 ∈ 𝐷, returning the longest search path cost among them. Our function only
computes rightward pointer traversals, as downward movements equate to a simple array
lookup.

150

Rep𝐾 (S)

1 : for 𝑖 ← 1 to 𝑚 do
2 : 𝑇 [𝑖] ← new L
3 : for (𝑥, 𝑣) ∈ S
4 : 𝑇 ← Up𝐾 (𝑇, ins(𝑥,𝑣))
5 : return 𝑇

Up𝐾 (𝑇, up(𝑥,𝑣))

1 : 𝑣 ← Qry𝐾 (𝑇, qry𝑥)
2 : if 𝑣 ≠ ★
3 : Up𝐾 (𝑇, del𝑥)
4 : 𝑖 ← Hash(𝐾, 𝑥)
5 : 𝑇 [𝑖] .ireplace((𝑥, 𝑣), (⋄,⋄))
6 : return 𝑇

Up𝐾 (𝑇, del𝑥)

1 : 𝑣 ← Qry𝐾 (𝑇, qry𝑥)
2 : if 𝑣 ≠ ★
3 : 𝑖 ← Hash(𝐾, 𝑥)
4 : 𝑇 [𝑖] .replace((𝑥, 𝑣), (⋄,⋄))
5 : return 𝑇

Qry𝐾 (𝑇, qry𝑥)

1 : 𝑣 ← ★

2 : 𝑖 ← Hash(𝐾, 𝑥)
3 : 𝑣′ ← 𝑇 [𝑖] .find(𝑥)
4 : if 𝑣′ ≠ null
5 : 𝑣 ← 𝑣′

6 : return 𝑣

Figure 5-8. A robust hash table in the AAPC security model. It is an explicitly keyed hash-table structure
RHT[Hash, 𝑏] admitting insertions, modified deletions, and queries for any 𝑘 ∈ U𝜅 and its
associated value 𝑣. The parameters are an integer 𝑏 ≥ 1, and a keyed function
Hash : K ×U𝜅 → [𝑏] that maps the key part of key-value pair data-object elements (encoded
as strings) to a position in the one of the table buckets 𝑣.𝑇 . A particular choice of parameters
gives a concrete scheme. Each bucket contains a simple linked list L equipped with its usual
operations. We define the replace operation of L, such that if it finds an item with (𝑥, 𝑣) = (⋄,⋄)
during its internal search, the item to be inserted is written in this location; otherwise a regular
insertion occurs. If an item is not contained in the map, the distinguished symbol ★ is returned.

Gap attack on skip list

1 : 𝐿 ← 0, 𝑅 ← 2𝑛

2 : for 𝑖 ← 1 to 𝑛
3 : insert element 𝑀 ← (𝑅 + 𝐿)/2
4 : if height(𝑀) = 0 then 𝐿 ← 𝑀 else 𝑅 ← 𝑀

Figure 5-9. The gap attack on skip lists, inserting 𝑛 elements from {0, 1}𝑛.

151

Rep𝐾 (S)

1 : h← NewNode(𝑚,★)
2 : L.header← h, L.level← 1
3 : for (𝑥, 𝑣) ∈ S
4 : L← Up𝐾 (L, ins(𝑥,𝑣))
5 : return L

NewNode(ℓ, (𝑥, 𝑣))

1 : // array position 0 is reserved for
2 : // a deleted bit, key, value triple (𝑑, 𝑥, 𝑣)
3 : // accessible via 𝑛.del, 𝑛.key and 𝑛.value
4 : // array positions 1 . . . ℓ are forward pointers
5 : // level is accessible via 𝑛.level
6 : node← new [0, .., ℓ]
7 : node[0] ← (⊥, 𝑥, 𝑣)
8 : for 𝑖 ← ℓ downto 1 do
9 : node[𝑖] ← null

10 : return node

RandomLevel𝐾 (𝑥)

1 : ℓ ← 𝑅 (𝐾, 𝑥, 𝑚, 𝑝)

2 : return ℓ

3 : ℓ ← 1, 𝑟 ←← [0, 1)
4 : while 𝑟 < 𝑝 and ℓ < 𝑚 do
5 : ℓ ← ℓ + 1, 𝑟 ←← [0, 1)
6 : return ℓ

Qry(L, qry𝑥)

1 : 𝑐 ← L.header
2 : for 𝑖 ← L.level downto 1 do
3 : while 𝑐[𝑖] ≠ null and 𝑐[𝑖] [0].key < 𝑥 do
4 : 𝑐 ← 𝑐[𝑖]
5 : 𝑐 ← 𝑐[1]
6 : if 𝑐 ≠ null and 𝑐[0].key = 𝑥 and 𝑐[0].del ≠ ⊥ then
7 : return 𝑐[0].value
8 : else
9 : return★

Up𝐾 (L, ins(𝑥,𝑣))

1 : u← new[1, .., 𝑚] // local array of pointers
2 : 𝑐 ← L.header
3 : for 𝑖 ← L.level downto 1 do
4 : while 𝑐[𝑖] ≠ null and 𝑐[𝑖] [0].key < 𝑥 do
5 : 𝑐 ← 𝑐[𝑖]
6 : 𝑢[𝑖] ← 𝑐

7 : 𝑐 ← 𝑐[1]
8 : if 𝑐 ≠ null and 𝑐[0].key = 𝑥 then
9 : 𝑐[0].value← 𝑣, 𝑐[0].del = ⊥

10 : else

11 : ℓ ← RandomLevel𝐾 (𝑥)
12 : if ℓ > L.level then
13 : for 𝑖 ← L.level + 1 upto ℓ do
14 : u[𝑖] ← L.header
15 : L.level← ℓ

16 : n← NewNode(ℓ, (𝑥, 𝑣))
17 : for 𝑖 ← 1 upto ℓ do
18 : n[𝑖] ← u[𝑖] [𝑖], 𝑢[𝑖] [𝑖] ← n
19 : // find layer ℓ − 1 middle element using tortoise and hare
20 : middle← 𝑢[ℓ], fast← 𝑢[ℓ]
21 : while fast ≠ n[ℓ] and fast[ℓ − 1] ≠ n[ℓ] do
22 : middle← middle[ℓ − 1], fast← fast[ℓ − 1] [ℓ − 1]
23 : // swapping logic
24 : if ℓ > middle.level then
25 : middle.append(n[ℓ]) , n← n[0 : ℓ − 1]
26 : 𝑢[ℓ] [ℓ] ← middle
27 : return L

Up(L, del𝑥)

1 : 𝑐 ← L.header
2 : for 𝑖 ← L.level downto 1 do
3 : while 𝑐[𝑖] ≠ null and 𝑐[𝑖] [0].key < 𝑥 do
4 : 𝑐 ← 𝑐[𝑖]
5 : 𝑐 ← 𝑐[1]
6 : if 𝑐 ≠ null and 𝑐[0].key = 𝑥 then
7 : 𝑐[0].del = ⊤
8 : return L

Figure 5-10. A robust, possibly “deterministic” (and keyed) skip list structure SL[𝑅 , 𝑚, 𝑝] admitting
insertions, deletions, and queries for any 𝑥 ∈ U for some well-ordered universeU. The
parameters are an integer 𝑚 ≥ 0 representing the maximum level of the structure, a
fraction 𝑝 ∈ (0, 1) used for determining an element’s random level, and, if using the
deterministic version of the structure, a keyed function 𝑅 : K ×U × Z+ × (0, 1) → [𝑚] that
maps an element to a level in accordance with the distribution imposed by 𝑚 and 𝑝. A
concrete scheme is given by a particular choice of parameters. Subroutines used by the
deterministic version of the structure appear in the boxed environment. We define the append
operation, such that it appends an element to the end of the node array.

152

Swapping mechanism for robust skip lists

1 : // find layer ℓ − 1 middle element using tortoise and hare

2 : middle← 𝑢[ℓ], fast← 𝑢[ℓ]
3 : while fast ≠ x[ℓ] and fast[ℓ − 1] ≠ x[ℓ] do
4 : middle← middle[ℓ − 1], fast← fast[ℓ − 1] [ℓ − 1]
5 : // swapping logic

6 : if ℓ > middle.level then
7 : middle.append(x[ℓ]), x← x[0 : ℓ − 1]
8 : 𝑢[ℓ] [ℓ] ← middle

Figure 5-11. The swapping mechanism for robust skip lists, which is invoked after a node x has been
inserted on layer ℓ and update vector 𝑢 has been constructed during this process.

153

Rep𝐾 (S)

1 : T.root← null
2 : for (𝑥, 𝑣) ∈ S do
3 : T← Up𝐾 (T, ins(𝑥,𝑣))
4 : return T

RandomPriority𝐾 (𝑥)

1 : 𝑝 ← 𝑅(𝐾, 𝑥)

2 : return 𝑝

3 : 𝑝 ←← (0, 1)
4 : return 𝑝

NewNode((𝑥, 𝑣), 𝑝)

1 : // array position 0 is reserved for

2 : // a deleted bit, key, value triple (𝑑, 𝑥, 𝑣)

3 : // accessible via 𝑛.del,, 𝑛.key and 𝑛.value

4 : // array positions 2, 3 are child pointers and 1 is priority

5 : node← [(⊥, 𝑥, 𝑣), 𝑝, null, null]
6 : return node

Qry(T, qry𝑥)

1 : T.root← Qryrec (T.root, qry𝑥)
2 : return T

Qryrec(𝑐, qry𝑥)

1 : if 𝑐 = null then
2 : return ★
3 : if 𝑐[0] .key = 𝑥 then
4 : return 𝑐[0] .key
5 : 𝑏 ← (𝑥 > 𝑐[0] .key)
6 : return Qryrec (𝑐[2 + 𝑏], qry𝑥)

Rotate(𝑐, 𝑏)

1 : tmp← 𝑐[2 + 𝑏] [3 − 𝑏]
2 : 𝑐[2 + 𝑏] [3 − 𝑏] ← 𝑐

3 : 𝑐[2 + 𝑏] ← tmp
4 : return tmp

Up𝐾 (T, ins(𝑥,𝑣))

1 : T.root← Uprec
𝐾 (T.root, ins(𝑥,𝑣))

2 : return T

Uprec
𝐾
(𝑐, ins(𝑥,𝑣))

1 : if 𝑐 = null then
2 : 𝑝 ← RandomPriority𝐾 (𝑥)
3 : return NewNode((𝑥, 𝑣), 𝑝)
4 : if 𝑐[0] .key = 𝑥 then
5 : 𝑐[0] .value← 𝑣, 𝑐[0] .key← ⊥
6 : return 𝑐
7 : 𝑏 ← (𝑥 > 𝑐[0] .key)
8 : 𝑐[2 + 𝑏] ← Uprec

𝐾 (𝑐[2 + 𝑏], ins(𝑥,𝑣))
9 : // maintain MIN Heap property

10 : if 𝑐[1] > 𝑐[2 + 𝑏] [1] then
11 : 𝑐 ← Rotate(𝑐, 𝑏)
12 : return 𝑐

Up𝐾 (T, del𝑥)

1 : Uprec
𝐾 (T.root, del𝑥)

2 : return T

Uprec(𝑐, del𝑥)

1 : if 𝑐 = null then
2 : return
3 : if 𝑐[0] .key = 𝑥 then
4 : // Remove node

5 : 𝑐[0] .del← ⊤
6 : else
7 : 𝑏 ← (𝑥 > 𝑐[0] .key)
8 : Uprec

𝐾 (𝑐[2 + 𝑏], del𝑥)
9 : return

Figure 5-12. A robust, possibly “deterministic” (and keyed) robust MIN treap structure TR[𝑅] admitting
insertions, deletions, and queries for any 𝑥 ∈ U for some well-ordered universeU. The
parameter is a keyed function 𝑅 : K ×U → (0, 1)) that assigns an element a random priority.
Subroutines used by the deterministic version of the structure appear in the boxed
environment. Let MinPrioChild(𝑐) denote the function that returns the child index (0 or 1)
of node 𝑐 with the minimum priority, or null if 𝑐 has no children.

154

Figure 5-13. Maximum and average hop count in the non-adaptive setting, displayed on a linear scale.

155

Figure 5-14. Maximum and average hop count in the adaptive setting, displayed on a logarithmic scale.

156

CHAPTER 6
CONCLUSION AND FUTURE WORK

This work contributes to a growing body of work that seeks to formalize the security of data

structures, bridging the gap between theoretical designs and practical implementations. By

rigorously analyzing compact frequency estimators and probabilistic skipping-based data

structures under adversarial models, this work demonstrates that the assumptions underlying

traditional performance guarantees often collapse in adversarial environments.

The results show that existing data structures, including Count-min sketch, HeavyKeeper,

hash tables, skip lists, and treaps, are susceptible to adaptive attacks that can severely degrade

correctness and performance. The development of Count-Keeper and the modified PSDS variants

provides a concrete pathway toward provably secure, efficient, and practically deployable

structures. These constructions are not merely theoretical but are supported by formal proofs and

empirical evaluations, highlighting their resilience against adaptive adversaries.

The Redis case study underscores the importance of bridging theory and practice. By

exposing vulnerabilities in Redis’s CFE implementations, this work demonstrates how small

design decisions, such as the use of non-cryptographic hash functions, can open pathways for

sophisticated attacks. The proposed countermeasures offer actionable steps toward more secure

deployments of widely-used data structures.

In sum, this work not only identifies vulnerabilities in widely adopted data structures but

also presents formalized, provably secure alternatives. It offers a rigorous foundation for future

work in designing efficient and secure data structures and serves as a call to incorporate

adversarial considerations into core data structure design. Below, we highlight several promising

directions inspired by this work.

Our work on CFEs suggests that nearly all existing sketch-based frequency estimators may

be susceptible to the kinds of attacks we present. While our proposed Count-Keeper structure

mitigates the extent of damage an adaptive adversary can inflict and enables the flagging of

potentially adversarially influenced estimates, it does not prevent adversaries from causing large

frequency estimation errors. This aligns with recent theoretical work: Hardt and Woodruff [100],

157

Cohen et al.[101], and Ben-Eliezer et al.[102] have shown that linear sketches (including CMS but

not HK) are fundamentally non-robust against well-resourced adaptive attacks, particularly in

various 𝐿𝑝-norm estimation tasks such as solving the 𝑘-heavy-hitters problem relative to the

𝐿2-norm.

Thus, a significant open problem is the design of a CFE that not only detects adversarial

manipulation but also outright prevents it. While Hassidim et al. [103] explore enhancing

streaming algorithms with differential privacy to achieve robustness, their approach is impractical

for real-world deployments in our setting. Either the query responses would become excessively

lossy, or the number of queries allowed would need to be severely restricted to deter attacks.

Developing a generically robust CFE structure remains an open and highly relevant challenge.

Additionally, it may be fruitful to explore further compositions of CPDS, as we did with

Count-Keeper. For instance, could one design more performant and robust approximate

set-membership structures by combining (say) Bloom filters and Cuckoo filters?

The Redis case study also opens avenues for further investigation. Many other PDS suites

are deployed in real-world systems, such as Google BigQuery and Apache Spark, and could be

subjected to the same detailed security analysis applied here. While methods for provably

securing PDS against attacks have been proposed [104, 8, 24, 11, 75, 10], these analyses often

focus on textbook versions of CPDS. Extending these analyses to the specific implementations

used in practice could greatly enhance confidence in their security.

More broadly, there is still a lack of understanding in the developer community about the

risks of using CPDS in adversarial environments. Further work is needed to educate practitioners

about these risks, and we hope this work can contribute to this effort. Alternatively, to shield

developers from these risks, one could develop new CPDS implementations that are secure by

default, packaging them into user-friendly libraries with safe APIs. This effort could benefit from

the experience of the cryptographic research community, which has developed “safe-by-default”

cryptographic libraries.

158

Regarding PSDS, while our theoretical bounds provide rigorous security guarantees, there is

scope to tighten these bounds further. Future work could extend our analysis to related data

structures, such as zip trees [105], zip-zip trees [106], skip graphs [107], and randomized meldable

heaps [108]. Additionally, exploring more sophisticated deletion strategies may reduce memory

overhead while preserving security guarantees. One promising direction involves localized

re-initializations, allowing portions of a structure to be safely rebuilt without compromising

robustness. Finally, our Adaptive Adversary Property Conservation (AAPC) framework could be

applied to broader classes of data structures and properties, given its inherent extensibility.

159

LIST OF REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2022.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[3] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content delivery,” ACM
SIGCOMM CCR, vol. 45, no. 3, p. 52–66, Jul. 2015.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,” in
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[5] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety, and Y. He,
“Bitfunnel: Revisiting signatures for search,” in ACM SIGIR Conference on Research and
Development in Information Retrieval, 2017.

[6] “Bip 37,” https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki.

[7] M. Naor and E. Yogev, “Bloom filters in adversarial environments,” in Annual Cryptology
Conference, 2015.

[8] D. Clayton, C. Patton, and T. Shrimpton, “Probabilistic data structures in adversarial
environments,” in ACM SIGSAC CCS, 2019.

[9] M. Filić, K. Paterson, A. Unnikrishnan, and F. Virdia, “Adversarial correctness and privacy
for probabilistic data structures,” in ACM SIGSAC CCS, 2022.

[10] M. Filić, K. Kocher, E. Kummer, and A. Unnikrishnan, “Deletions and dishonesty:
Probabilistic data structures in adversarial settings,” in International Conference on the
Theory and Application of Cryptology and Information Security. Springer, 2025, pp.
137–168.

[11] K. G. Paterson and M. Raynal, “Hyperloglog: Exponentially bad in adversarial settings,” in
EuroS&P, 2022. [Online]. Available: https://doi.org/10.1109/EuroSP53844.2022.00018

[12] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the analysis of a
near-optimal cardinality estimation algorithm,” in DMTCS Conference on Analysis of
Algorithms, 2007.

[13] S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic complexity attacks,” in
USENIX Security, 2003. [Online]. Available: https://www.usenix.org/conference/
12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks

[14] A. Klink and J. Walde, “Efficient denial of service attacks on web application platforms,” in
28th Chaos Communication Congress, 2011.

160

https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://doi.org/10.1109/EuroSP53844.2022.00018
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks

[15] J.-P. Aumasson, M. Boßlet, and D. J. Bernstein, “Hash-flooding dos reloaded:attacks and
defenses,” Slides presented at the 2011 Application Security Forum – Western Switzerland,
October 2011. [Online]. Available: https://web.archive.org/web/20130913185247/https:
//131002.net/siphash/siphashdos appsec12 slides.pdf

[16] R. Rosen, “Netfilter,” Linux Kernel Networking: Implementation and Theory, pp. 247–278,
2014.

[17] P. Bottinelli, “Technical advisory – hash denial-of-service attack in multiple quic
implementations,” April 2025, nCC Group Research Blog.

[18] E. Nussbaum and M. Segal, “Skiplist timing attack vulnerability,” in International
Workshop on Data Privacy Management. Springer, 2019, pp. 49–58.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,”
ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[20] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,”
Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[21] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice of bloom filters for
distributed systems,” IEEE Communications Surveys & Tutorials, vol. 14, no. 1, pp.
131–155, 2011.

[22] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable wide-area web
cache sharing protocol,” IEEE/ACM transactions on networking, vol. 8, no. 3, pp. 281–293,
2000.

[23] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the count-min
sketch and its applications,” Journal of Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[24] M. Filić, K. G. Paterson, A. Unnikrishnan, and F. Virdia, “Adversarial correctness and
privacy for probabilistic data structures,” in ACM SIGSAC CCS, 2022. [Online]. Available:
https://doi.org/10.1145/3548606.3560621

[25] P. Reviriego and D. Ting, “Security of hyperloglog (hll) cardinality estimation:
Vulnerabilities and protection,” IEEE Communications Letters, vol. 24, no. 5, pp. 976–980,
2020.

[26] S. Albers and J. Westbrook, “Self-organizing data structures,” Online Algorithms: The state
of the art, pp. 13–51, 2005.

[27] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” Journal of the ACM
(JACM), vol. 32, no. 3, pp. 652–686, 1985.

[28] N. Reingold, J. Westbrook, and D. D. Sleator, “Randomized competitive algorithms for the
list update problem,” Algorithmica, vol. 11, no. 1, pp. 15–32, 1994.

161

https://web.archive.org/web/20130913185247/https://131002.net/siphash/siphashdos_appsec12_slides.pdf
https://web.archive.org/web/20130913185247/https://131002.net/siphash/siphashdos_appsec12_slides.pdf
https://doi.org/10.1145/3548606.3560621

[29] R. Bayer, “Symmetric binary b-trees: Data structure and maintenance algorithms,” Acta
informatica, vol. 1, no. 4, pp. 290–306, 1972.

[30] G. M. Adel’son-Vel’skii, “An algorithm for the organization of information,” Soviet Math.,
vol. 3, pp. 1259–1263, 1962.

[31] J. I. Munro, T. Papadakis, and R. Sedgewick, “Deterministic skip lists,” in Proceedings of
the third annual ACM-SIAM symposium on Discrete algorithms, 1992, pp. 367–375.

[32] R. Seidel and C. R. Aragon, “Randomized search trees,” Algorithmica, vol. 16, no. 4, pp.
464–497, 1996.

[33] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,” Commun. ACM, vol. 33,
no. 6, p. 668–676, jun 1990. [Online]. Available: https://doi.org/10.1145/78973.78977

[34] K. Mehlhorn and P. Sanders, “Hash tables and associative arrays,” Algorithms and Data
Structures: The Basic Toolbox, pp. 81–98, 2008.

[35] J. Blandy, J. Orendorff, and L. F. Tindall, Programming Rust. ” O’Reilly Media, Inc.”,
2021.

[36] Z. István, G. Alonso, M. Blott, and K. Vissers, “A hash table for line-rate data processing,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 8, no. 2, pp.
1–15, 2015.

[37] J. Zobel, S. Heinz, and H. E. Williams, “In-memory hash tables for accumulating text
vocabularies,” Information Processing Letters, vol. 80, no. 6, pp. 271–277, 2001.

[38] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer
networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[39] N. Bar-Yosef and A. Wool, “Remote algorithmic complexity attacks against randomized
hash tables,” in International Conference on E-Business and Telecommunications.
Springer, 2007, pp. 162–174.

[40] D. Eckhoff, T. Limmer, and F. Dressler, “Hash tables for efficient flow monitoring:
Vulnerabilities and countermeasures,” in 2009 IEEE 34th Conference on Local Computer
Networks. IEEE, 2009, pp. 1087–1094.

[41] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” in Proceedings of
the ninth annual ACM symposium on Theory of computing, 1977, pp. 106–112.

[42] A. Appleby, “Smhasher,” https://github.com/aappleby/smhasher, 2016.

[43] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, “Netscope: Traffic
engineering for ip networks,” IEEE Network, vol. 14, no. 2, pp. 11–19, 2000.

[44] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-wide anomalies in
traffic flows,” in ACM SIGCOMM Conference on Internet Measurement, 2004. [Online].
Available: https://doi.org/10.1145/1028788.1028813

162

https://doi.org/10.1145/78973.78977
https://github.com/aappleby/smhasher
https://doi.org/10.1145/1028788.1028813

[45] L. Melis, G. Danezis, and E. De Cristofaro, “Efficient private statistics with succinct
sketches,” arXiv preprint arXiv:1508.06110, 2015.

[46] “Redisbloom: Probabilistic data structures for redis,” https://oss.redis.com/redisbloom/.

[47] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li, “Heavykeeper: An accurate
algorithm for finding top-𝑘 elephant flows,” IEEE/ACM Transactions on Networking,
vol. 27, no. 5, pp. 1845–1858, 2019.

[48] B. Sigurleifsson, A. Anbarasu, and K. Kangur, “An overview of count-min sketch and its
applications,” https://easychair.org/publications/preprint/gNlw, 2019.

[49] “Redis is an open source (BSD licensed), in-memory data structure store, used as a
database, cache, and message broker.” https://redis.io/.

[50] S. A. Markelon, M. Filić, and T. Shrimpton, “Compact frequency estimators in adversarial
environments,” Cryptology ePrint Archive, Paper 2023/1366, 2023. [Online]. Available:
https://eprint.iacr.org/2023/1366

[51] H. Liu, Y. Sun, and M. S. Kim, “Fine-grained ddos detection scheme based on bidirectional
count sketch,” in International Conference on Computer Communications and Networks,
2011.

[52] A. Mandal, H. Jiang, A. Shrivastava, and V. Sarkar, “Topkapi: parallel and fast sketches for
finding top-k frequent elements,” NeurIPS, 2018.

[53] R. Berinde, P. Indyk, G. Cormode, and M. J. Strauss, “Space-optimal heavy hitters with
strong error bounds,” ACM Transactions on Database Systems, vol. 35, no. 4, 2010.
[Online]. Available: https://doi.org/10.1145/1862919.1862923

[54] A. Metwally, D. Agrawal, and A. E. Abbadi, “An integrated efficient solution for computing
frequent and top-k elements in data streams,” ACM Transactions on Database Systems,
vol. 31, no. 3, p. 1095–1133, sep 2006. [Online]. Available:
https://doi.org/10.1145/1166074.1166084

[55] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data streams,” in
International Colloquium on Automata, Languages, and Programming, 2002, pp. 693–703.

[56] G. S. Manku and R. Motwani, “Approximate frequency counts over data streams,” in
International Conference on Very Large Databases, 2002.

[57] H. Melville, Moby Dick; Or, The Whale. Project Gutenberg, 1851.

[58] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.” Glottometrics, vol. 3,
no. 1, pp. 143–150, 2002.

[59] G. Cormode and S. Muthukrishnan, “What’s hot and what’s not: tracking most frequent
items dynamically,” ACM Transactions on Database Systems, vol. 30, no. 1, pp. 249–278,
2005.

163

https://oss.redis.com/redisbloom/
https://easychair.org/publications/preprint/gNlw
https://redis.io/
https://eprint.iacr.org/2023/1366
https://doi.org/10.1145/1862919.1862923
https://doi.org/10.1145/1166074.1166084

[60] T. Roughgarden and G. Valiant, “Cs168: The modern algorithmic toolbox lecture #2:
Approximate heavy hitters and the count-min sketch,” p. 15.

[61] N. Homem and J. P. Carvalho, “Finding top-k elements in data streams,” Information
Sciences, vol. 180, no. 24, pp. 4958–4974, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002002551000397X

[62] R. Real and J. M. Vargas, “The probabilistic basis of jaccard’s index of similarity,”
Systematic biology, vol. 45, no. 3, pp. 380–385, 1996.

[63] “Probabilistic: Probabilistic data structures in Redis.”
https://redis.io/docs/data-types/probabilistic/.

[64] R. T. RedisConf 2021. (2024) How Adobe uses the Enterprise tier of Azure Cache for Redis
to serve push notifications, Adobe. https://www.youtube.com/watch?v=OslaeJEXW5k.

[65] C. M. RedisDays New York 2022. (2024) Using AI to Reveal Trading Signals Buried in
Corporate Filings. https://www.youtube.com/watch?v= Lrbesg4DhY.

[66] G. Y. Redis Day TLV 2016. (2024) Redis @ Facebook.
https://www.youtube.com/watch?v=XGxntWcjI24.

[67] R. B. RedisConf 2021. (2024) Redis on the 5G Edge: Practical advice for mobile edge
computing, Verizon. https://www.youtube.com/watch?v=NwQwE2JAIXc.

[68] K. J. The Data Economy Podcast. (2024) Using Real-Time Data and Digital Twins to
Improve Cyber Security. hhttps://www.youtube.com/watch?v=TycylT0J6cc.

[69] S. Sanfilippo, “A few things about redis security.” http://antirez.com/news/96.

[70] T. Fiebig, A. Feldmann, and M. Petschick, “A one-year perspective on exposed in-memory
key-value stores,” in ACM Workshop on Automated Decision Making for Active Cyber
Defense, 2016. [Online]. Available: https://doi.org/10.1145/2994475.2994480

[71] “Redis security: Security model and features in Redis.”
https://redis.io/docs/latest/operate/oss and stack/management/security/.

[72] T. Gerbet, A. Kumar, and C. Lauradoux, “The power of evil choices in bloom filters,” in
DSN, 2015. [Online]. Available: https://doi.org/10.1109/DSN.2015.21

[73] D. Desfontaines, A. Lochbihler, and D. Basin, “Cardinality Estimators do not Preserve
Privacy,” in PETs, 2019.

[74] P. Reviriego and D. Ting, “Security of hyperloglog (HLL) cardinality estimation:
Vulnerabilities and protection,” IEEE Commun. Lett., vol. 24, no. 5, pp. 976–980, 2020.
[Online]. Available: https://doi.org/10.1109/LCOMM.2020.2972895

[75] S. A. Markelon, M. Filić, and T. Shrimpton, “Compact frequency estimators in adversarial
environments,” in ACM SIGSAC CCS, 2023. [Online]. Available:
https://doi.org/10.1145/3576915.3623216

164

https://www.sciencedirect.com/science/article/pii/S002002551000397X
https://redis.io/docs/data-types/probabilistic/
https://www.youtube.com/watch?v=OslaeJEXW5k
https://www.youtube.com/watch?v=_Lrbesg4DhY
https://www.youtube.com/watch?v=XGxntWcjI24
https://www.youtube.com/watch?v=NwQwE2JAIXc
hhttps://www.youtube.com/watch?v=TycylT0J6cc
http://antirez.com/news/96
https://doi.org/10.1145/2994475.2994480
https://redis.io/docs/latest/operate/oss_and_stack/management/security/
https://doi.org/10.1109/DSN.2015.21
https://doi.org/10.1109/LCOMM.2020.2972895
https://doi.org/10.1145/3576915.3623216

[76] M. R. Albrecht and K. G. Paterson, “Analysing cryptography in the wild - a retrospective,”
Cryptology ePrint Archive, Paper 2024/532, 2024, https://eprint.iacr.org/2024/532.
[Online]. Available: https://eprint.iacr.org/2024/532

[77] T. Dunning, “The t-digest: Efficient estimates of distributions,” Software Impacts, vol. 7, p.
100049, 2021.

[78] T. M. Kodinariya, P. R. Makwana et al., “Review on determining number of cluster in
k-means clustering,” International Journal, vol. 1, no. 6, pp. 90–95, 2013.

[79] M. Filić, J. Hofmann, S. A. Markelon, K. G. Paterson, and A. Unnikrishnan, “Probabilistic
data structures in the wild: A security analysis of redis,” Cryptology ePrint Archive, Paper
2024/1312, 2024. [Online]. Available: https://eprint.iacr.org/2024/1312

[80] “PDS in the Wild GitHub Repository,”
https://anonymous.4open.science/r/PDS-in-the-Wild-A-Security-Analysis-of-Redis-5365.

[81] “Coding blog,”
https://bitsquid.blogspot.com/2011/08/code-snippet-murmur-hash-inverse-pre.html.

[82] J.-P. Aumasson, D. J. Bernstein, and M. Boßlet, “Hash-flooding DoS reloaded: attacks and
defenses,” https://web.archive.org/web/20130913185247/https:
//131002.net/siphash/siphashdos appsec12 slides.pdf.

[83] “Redis blog post on top-k,”
https://redis.com/blog/meet-top-k-awesome-probabilistic-addition-redis/.

[84] M. Nowack,
https://discord.com/blog/using-rust-to-scale-elixir-for-11-million-concurrent-users, 2019.

[85] Apache, https://vovkos.github.io/doxyrest/samples/apr-sphinxdoc/group apr skiplist.html,
2023.

[86] A. Prout,
https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/, 2019.

[87] A. Ambainis, “Quantum walk algorithm for element distinctness,” in 45th Annual IEEE
Symposium on Foundations of Computer Science, 2004, pp. 22–31.

[88] P. Kisters, H. Bornholdt, and J. Edinger, “Skabnet: A data structure for efficient discovery
of streaming data for iot,” in 2023 32nd International Conference on Computer
Communications and Networks (ICCCN), 2023, pp. 1–10.

[89] J. Zhao, Y. Pan, H. Zhang, M. Lin, X. Luo, and Z. Xu, “Inplacekv: in-place update scheme
for ssd-based kv storage systems under update-intensive worklaods,” Cluster Computing,
05 2023.

[90] C. R. Aragon and R. Seidel, “Randomized search trees,” in FOCS, vol. 30, 1989, pp.
540–545.

165

https://eprint.iacr.org/2024/532
https://eprint.iacr.org/2024/532
https://eprint.iacr.org/2024/1312
https://anonymous.4open.science/r/PDS-in-the-Wild-A-Security-Analysis-of-Redis-5365
https://bitsquid.blogspot.com/2011/08/code-snippet-murmur-hash-inverse-pre.html
https://web.archive.org/web/20130913185247/https://131002.net/siphash/siphashdos_appsec12_slides.pdf
https://web.archive.org/web/20130913185247/https://131002.net/siphash/siphashdos_appsec12_slides.pdf
https://redis.com/blog/meet-top-k-awesome-probabilistic-addition-redis/
https://discord.com/blog/using-rust-to-scale-elixir-for-11-million-concurrent-users
https://vovkos.github.io/doxyrest/samples/apr-sphinxdoc/group_apr_skiplist.html
https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/

[91] E. D. Demaine, J. Iacono, and S. Langerman, “Retroactive data structures,” ACM
Transactions on Algorithms (TALG), vol. 3, no. 2, pp. 13–es, 2007.

[92] Y. Ji, E. Dubrova, and R. Wang, “Is your bluetooth chip leaking secrets via rf signals?”
Cryptology ePrint Archive, 2025.

[93] S. Chawla, “Cs787: Advanced algorithms scribe notes, lecture 7: Randomized load
balancing and hashing,” September 2009. [Online]. Available:
https://pages.cs.wisc.edu/∼shuchi/courses/787-F09/scribe-notes/lec7.pdf

[94] D. E. Knuth, The art of computer programming. 2. Seminumerical algorithms.
Addison-Wesley, 1971.

[95] J. Ville, Etude critique de la notion de collectif. Gauthier-Villars Paris, 1939, vol. 3.

[96] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford University Press, 02 2013. [Online]. Available:
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001

[97] D. A. Freedman, “On tail probabilities for martingales,” the Annals of Probability, pp.
100–118, 1975.

[98] M. Burnett, https:
//medium.com/xato-security/today-i-am-releasing-ten-million-passwords-b6278bbe7495,
2015.

[99] M. T. McClellan and J. Minker, “The art of computer programming, vol. 3: sorting and
searching,” 1974.

[100] M. Hardt and D. P. Woodruff, “How robust are linear sketches to adaptive inputs?” in ACM
STOC, 2013.

[101] E. Cohen, X. Lyu, J. Nelson, T. Sarlós, M. Shechner, and U. Stemmer, “On the robustness
of countsketch to adaptive inputs,” https://arxiv.org/abs/2202.13736, 2022.

[102] O. Ben-Eliezer, R. Jayaram, D. P. Woodruff, and E. Yogev, “A framework for adversarially
robust streaming algorithms,” Journal of the ACM, vol. 69, no. 2, 2022. [Online].
Available: https://doi.org/10.1145/3498334

[103] A. Hassidim, H. Kaplan, Y. Mansour, Y. Matias, and U. Stemmer, “Adversarially robust
streaming algorithms via differential privacy,” in NeurIPS, 2020. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/hash/
0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html

[104] M. Naor and E. Yogev, “Bloom filters in adversarial environments,” in CRYPTO, ser.
Lecture Notes in Computer Science, 2015. [Online]. Available:
https://doi.org/10.1007/978-3-662-48000-7 28

[105] R. E. Tarjan, C. Levy, and S. Timmel, “Zip trees,” ACM Transactions on Algorithms
(TALG), vol. 17, no. 4, pp. 1–12, 2021.

166

https://pages.cs.wisc.edu/~shuchi/courses/787-F09/scribe-notes/lec7.pdf
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://medium.com/xato-security/today-i-am-releasing-ten-million-passwords-b6278bbe7495
https://medium.com/xato-security/today-i-am-releasing-ten-million-passwords-b6278bbe7495
https://arxiv.org/abs/2202.13736
https://doi.org/10.1145/3498334
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://doi.org/10.1007/978-3-662-48000-7_28

[106] O. Gila, M. T. Goodrich, and R. E. Tarjan, “Zip-zip trees: Making zip trees more balanced,
biased, compact, or persistent,” in Algorithms and Data Structures Symposium. Springer,
2023, pp. 474–492.

[107] J. Aspnes and G. Shah, “Skip graphs,” Acm transactions on algorithms (talg), vol. 3, no. 4,
pp. 37–es, 2007.

[108] A. Gambin and A. Malinowski, “Randomized meldable priority queues,” in International
Conference on Current Trends in Theory and Practice of Computer Science. Springer,
1998, pp. 344–349.

167

BIOGRAPHICAL SKETCH

Sam Markelon is a computer science researcher specializing in cryptography and the use of

randomization and probabilistic techniques in algorithms and data analysis. His research focuses

on applying provable security frameworks to analyze probabilistic data structures under

adversarial conditions.

Sam earned his Ph.D. in Computer Science from the University of Florida in 2025, under

the guidance of Dr. Vincent Bindschaedler and Dr. Thomas Shrimpton. He completed his

bachelor’s degree in computer science with a minor in mathematics from the University of

Connecticut in 2020, where he was named a Barry M. Goldwater Scholar. Upon defending his

dissertation, Sam joined Proof Trading as a Quantitative Researcher.

168

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Thesis Statement
	Contributions
	Compact Frequency Estimators in Adversarial Environments
	Compact Frequency Estimators in the Wild: A Case Study of Redis
	Provably Robust Probabilistic Skipping-Based Data Structures

	Outline and Publications

	Background
	Notation
	Bitstring and Set Operations
	Functions
	Arrays and Tuples

	A Syntax for Data Structures
	Streaming Data
	Related Works
	Compact Probabilistic Data Structures and Compact Frequency Estimators
	Probabilistic Skipping-Based Data Structures

	Compact Frequency Estimators in Adversarial Environments
	Formal Attack Model
	Count-min Sketch
	HeavyKeeper
	Attacks on CMS and HK
	Cover Sets
	Cover-Set Attacks on CMS
	Cover-Set Attacks on HK

	Count-Keeper
	Structure
	Correcting CMS and Correctness of CK
	Frequency estimate errors
	Experimental Results
	Attacks Against the CK
	Adversarial Robustness

	Compact Probabilistic Data Structures in the Wild: A Security Analysis of Redis
	PDS in Redis
	Count-min Sketch
	Top-K

	Attacks Against PDS in Redis
	MurmurHash Inversion Attacks
	Count-Min Sketch Attack
	Top-K

	Potential Countermeasures

	Provably Robust Probabilistic Skipping-based Data Structures
	Structures we Analyze
	Hash Tables
	Skip Lists
	Treaps

	Unifying Probabilistic Skipping-Based Data Structures
	Timing Side Channels
	Towards Robust PSDS

	A Security Model for Probabilistic Skipping-Based Structures
	Robust Hash Tables
	Insecurity Of Standard Hash Tables
	A Robust Construction
	Robust Hash Tables in Real World Deployments

	Robust Skip Lists
	Insecurity of Standard Skip Lists
	A Robust Construction
	Robust Skip Lists in Real World Deployments

	Robust Treaps
	(In)Security of the Standard Treap
	A Robust Construction
	Robust Treaps in Real World Deployments

	Experimental Results

	Conclusion and Future Work
	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

