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VWhat are data structures!?

Data structures define representations of possibly
dynamic (multi)sets along with the operations that
can be performed on the representation.
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Hash Flood DoS Attacks

|
A : foo

|
B : bar

l
C : xyz

hash (A)
hash (:
hash (

S

e () ™

Insertion of n elements ~ O(n?)
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Thesis Statement

For compact frequency estimators (a subclass of compressing probabilistic data
structures) and probabilistic skipping-based data structures (including hash
tables, skip lists, and treaps), formal adversarial models that capture the adaptive
ability of adversaries can be defined under which these structures are
demonstrably insecure. Specifically, these models capture scenarios in which an
adversary, with knowledge of the structure’s parameters, query responses, and, in
certain cases, Initialization choices and representations, can degrade correctness
or performance guarantees beyond acceptable thresholds. It is further claimead
that, for these same adversarial models, it is possible to construct new variants of
these data structures that are provably robust, with explicit, formal guarantees
on their correctness, performance, and security under attack.
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Compressing Probabilistic Data Structures

“reguency estimation
—low many times does x occur Iin the stream?
Count-min sketch, Heavy-keeper

Compactly represent
(a stream of) data

clgle Membership queries

s X In the set?
Bloom filter, Cuckoo filter

provide approximate
answers to

queries about the »  Cardinality estimation

data How many distinct elements in the set?
HyperlLoglLog, KMV estimator
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Compressing Probabilistic Data Structures

FLORIDA

Compactly represent
(a stream of) data
* Bound on the response error

zigle - False positive rate for BF
»  Over-estimation bound for CMS
provide approximate Bound s strictly non-adaptive
answers 10 Data does not depend on internal $$ of structure

gueries about the
data
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Compressing Probabilistic Data Structures

Frequency
estimation PDS

Membership

. query PDS
find the most
sold stocks In

the past minute

check
certificate

revocations

“requency n TLS/SSL
estimation PDS

identify possible Cardinality estimation PDS

DoS threats

(network- count the number

of distinct users
on a given
service

monitoring
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Probabilistic Skipping-Based Data Structures

hash
keys function buckets
00 — P o Pt NIL
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Dissertation VWork

Compact Frequency
Estimators in Adversarial
Environments

CCS 23

Probabilistic Data
Structures in the Wild: A
Security Analysis of

Redis

CODASPY 25

Probabilistic
Skipping-Based Data
Structures with Robust
Efficiency Guarantees

Submitted to CCS ‘25
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UNIVERSITY of
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Compact Frequency tstimators
N Adversarial Environments

Sam A. Markelon, Mia Fili¢, and Thomas Shrimpton
(CCS 23)




Adversarial Correctness of CFE
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Adversarial Correctness of CPDS

[AuthorsYear] Structures Security Proof Style

Game based

INY15] Bloom filter

Standard hash functions:
Large correctness errors

Bloom Filter
[CPS19] Counting Filter Game based

Count-min Sketch

[PR22] HyperLoglLog Simulation Swap to a keyed primitive:
Adversarial robust structures™
Bloom Filter Simulation
[FPUV22] Cuckoo Filter (privacy notions!)

Count-min Sketch

HeavyKeeper Game based

[MFS23]

Florida Institute for Cybersecurity (FICS) Research



Count-min Sketch (CMS)

m columns

K rows
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CMS Insert

iInsert(x
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CMS Query
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CMS Properties

»+ Only overestimates

*+ "Honest Setting” suarantee

» Adversarial setting?
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CFE Error Model (simplified)

CMS[:
iInsert
query

\EVANIEE
reveal

CMS error

hash

query(x) >> true_frequency(x)
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CMS “Public Hash'” Attack

IIIIIIII

DA

Cover set

@

Err = insertions/k

Cover set ={a, b, c}
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CMS Attacks Mitigations




CMS Attacks Mrtigations

Still attacks when using a PRF and blackboxed structure!
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Existing CFEs are not adversarially robust!




Motivating a more robust CrE

FLORIDA

cnt = n, + 2 CMS minimizes the “collision noise”

yE V’

Can we do better? Yes!

-

CMS

Idea: Use information from an auxiliary sketch!
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Count-Keeper

Hybrid between a CMS and H

Detects attacks

Flageing mechanism

» Attacks are less damaging

« Works well In practice

Honest setting performance CMS M HK A
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Future VWork

- CFE that prevent attacks?
« Other compositions of CPDS?
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Probabilistic Data Structures in
the Wild: A Security Analysis of

Redls

Mia Fili¢, Jonas Hofmann, Sam A. Markelon, Kenneth G. Paterson,

Anupama Unnikrishnan™
(CODASPY 25 — Best Paper Award)

* Alphabetical Ordering Used

ybersecurity (FICS) Research



Redls and RedisBloom

S <
redis <




RedisBloom Detalls

Open Source

- Widely Usec
+ Six PDS (We examine four)

» Bloom Filters, Cuckoo filters, Count=-min Sketch, Top-K
(HeavyKeeper)

* HyperlLoglog, [-Digest

« Use MurmurHash2Z with fixed seeds
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Redis Security Model

"...It's totally insecure to let untrusted clients access the system,
please protect it from the outside world yourself”

‘an attacker might insert data into Redis that triggers pathological (worst case)
algorithm complexity on data structures implemented inside Redis
internals”
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Our Attacks

- len different attacks against the four CPDS we conside

* One against CMS and three against HK

MurmurHashZ family has fast inversion algorithms!

» Jarget hash h and seed s, can generate arbitrarily many x s.t. h = hash(s,x).

Due to ASCII formatting constraints need to try ~ 16 inversions to find a
collision

Upshot for CFE: Find cover sets very fast!
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Use Hash Inversions!

o \/\/e ha\/e iﬂvel”tib\e MMHZ iﬂ ReCiS 12? def mmh64A_inverse(h: int, seed: int) -> int:

"""Calculate a one-block inverse of an element using MurmurHash64A

152
. . . . 153~ Args: | | .
* FInd cover set using Inversions. 5 h Gint): Hosh value to fmert
156
157 ~ Returns:
- Say that we have target x 158 int: Pre-inoge for b

160 # hashing constants

® h_ ‘ <X> :ZS,h_Z <X> — 278 o ig% :;l ;u?)égﬁ??gzzz’szd%ﬁ\g/zise of m under % 2764

163 minv = Ox5f7a@ea7e59b19bd

164 r = 47
° Slm D‘y compute 122 h = uint64Ch A Ch >> r))
. 167 h = u?nt64(h * minv)
y_I=mmh2_inverse(25,1), Bl e L )
. 170
y_zzmmhz_lﬂver‘se(278,2> e 171 hforward = uint64(seed A (8 * m))
172 k = uinte4(h A~ hforward)
173
+ Eliminates our exhaustive search B e A e

176 k
177
178 return k

uinte4(k * minv)
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CMS Overestimation Attack

€0 (m. k) Ours | [24]

2.7 X 1?1‘032, 41.2)>< 102 csgs | azsaas
6.6 X 1?;(;‘62.2; 10 * 6111 | 34133 36
2.7 X 1?1";;3)" 1071 5422 | 2226472
6.6 X 1?‘;(;‘63-;; 107+ 128.8 | 89058.72

Table 1: Experimental number (average over 100 trials) of
equivalent MurmurHash2 calls needed to find a cover for a
random target x. We compare the average to the expected
number of MurmurHash2 calls needed in the attack of [24],
namely kmHy.

Implement attack from CCS 23 paper far more efficiently!
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HK Attacks

» Very efficiently cause frequent elements to “disappear” (CCS "23)

-+ Overestimation attacks due to being able to efficiently find fingerprint collisions

« DoS the entire structure

* Pre-compute elements that map to every counter in the structure

* |nsert them ~ 100 times each In succession

*  Any subsequent insertions are never recordec
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Countermeasures for RedisBloom

« PRF switch for Bloom filter and Cuckoo Filter

* Recall — no provably secure CFE that prevents attacks

* Suggestion: use Count-Keeper with a PRF
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Future VWork

« Other PDS Surtes

+ Google Big Query and Apache Spark

-xtend Provable Security Work to Deployed Variants

-ducate Developers about PDS in Adversarial Environments

» Safe-by-default PDS Libraries
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Probabilistic Skipping-Based Data
Structures with Robust
Ffficiency Guarantees

Morrtz Huppert, Sam A. Markelon, Marc Fischlin®
(In Submission: CCS "25)

* Alphabetical Ordering Used
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Probabilistic Skipping-Based Data Structures (PSDS)

hash
keys function buckets
00
, 01 | 521-8976
John Smith
02 | 521-1234
: : 03
Lisa Smith
13
Sandra Dee
. —— = 14| 521-9655
15

Hash table
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Skip list

1l
YYVY

head

P NIL

B P o P NIL

' B e e P o P o P NIL

P 1P P Pt P o—— Pt P P o——PNIL
2 3 4 S 6 I 38 9] |10

Treap

https://en.wikipedia.org/wiki/Skip_list#/media/File:Skip_list.svg

18,
16

14 |
12
10

DO &~ O OO

(1,14)
(18,11)
1(19’2)
! (10,1) d18.1)

9 4 6 8 10 12 14 16 18 20 22

https://en.wikipedia.org/wiki/Treap#/media/File: Treap.svg
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Why care about PSDS!

* Fast average-case search

« Dominates update and deletion operation

« What about worst-case runtime?

- We are In the average case with high probability!

» Pr[search cost > ¢(average-case search cost)| <o

» Under non-aaversarial assumptions™
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Recall: Hash Flood DoS Attacks

hash (A)
hash (B)
hash (C)

A : T00

|
B : bar

l
C : xyz

Insertion of n elements ~ O(n?)
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Similar Attacks Against Skip Lists

— | o P NIL
— P o P o P! o P NIL
—>p o P P @ > o o P> NIL
1 P Pt 1P Pt 1Pt P e Pt 1P Pt 1 PINIL

head |1 2 3 4 5 6 / 38 9 (10

Jorge Stolfi, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
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Motivating a Security Model

A plethora of attack papers against hash tables

+ Some of these exploit timing side channels

L imited attacks for skip list and treaps

« Some countermeasures explorec

No real attempt to formalize a security model

 We consider the strongest adversary

» (Can perform any sec

uence of operations (wrt to some buc

Has access to the internals of the structure at all times

Florida Institute for Cybersecurity (FICS) Research
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Conserve larget Properties of the DS

+  Want to conserve fast search operation HIT Mzt Scweeh Path: $(0, repe)

: e« 0
: fori—1tom
£ « length(T[i])

1
2
3
4: if £>e
5
6

+ bntirely determined by the representation

e —1{

+  Known “non-adaptive” bounds

: returne

(a) The HT Maximum Search Path function ¢ : D X

° We Car‘e abo u‘t IongeSt Sear‘ch ‘tl m e {0,1}* — R. The function iterates through all m buck-

ets, returning the bucket with the greatest population,
which is equivalent to the longest search path in the ta-

*+  Maximum bucket population for HT ble

TR Maximum Search Path: ¢ (D, repr)

+ Maximum search path length for skip list and treap '+ retum (T ook 0
¢ “(n,e)

: if n = null then

return

ey — ¢ (n[2],e+1)

» Adversary wins In our game If the measured property
. ey — @°(n[3],e+1)

after their execution exceeds the non-adaptive A
bounc b>/ mOre :f]an SOme ‘lmlt (b) The TR Maximum Search Path function ¢ : D X

{0,1}* — R. The function performs an in-order traversal
for all elements d € D, returning the longest search path
cost among them.

w =N w Do —

Florida Institute for Cybersecurity (FICS) Research
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AAPC Security Model

Adaptive Adversary Property Conservation
Maximise

Search Path Cost

PSDS[ ]

iInsert search time() >> expected search time()
delete

Preserve the Expected
Search Path Cost for the
“Worst” Search

Probability that the
Definition 5.1 ((¢, B, €, 8, t)-Conserved). We say a skipping-based
ad Ve rS ary probabilistic data structure II is (¢, f, €, §, t)-conserved if the ad-

vantage of an AAPC-adversary A running in time ¢ is less-than-
or-equal to d for some property function ¢, some target bound f

can make a search path some.c € Boc > 0, and some 8 € [0,1). More preciscly,we say the
cost deviate far R e
from the expected search
path cost is small.

Adv;:;, fie (A) = Pr[Exp;;f;’ B (A)=1]<6

Florida Institute for Cybersecurity (FICS) Research



Towards Robust Structures

 No deletions

Replicate functionality by marking elements deleted — “lazy” deletion

Prevents trivial attacks, aligns with usual operational parameters, can be
overwritten by fresh insertions

* No choosing how or where elements are inserted

Hash table: PRF instead of hash function

» Skip list: localized “swapping mechanism

* |reap: Inherent robustness!

Florida Institute for Cybersecurity (FICS) Research



Robust Hash lable

- Lazy deletions + PRF

- Lazy deletions prevent trivial

attacks

» PRFs prevent hash flooc

attack

- Ball-in-bins average case target

* N=0D

* [radeoff between s
robustness

DACE dNC

< ﬁ + "PRF advantage

UF

UNIVERSI

FLOR

IDA
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Skip List Gap Attack

-

‘the gap”

Goal: Extend this “flat” run

insert 'XS < X’ < X6
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Skip List Gap Attack

-

Goal: Extend this “flat” run
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Skip List Gap Attack

Goal: Extend this “flat” run

Florida Institute for Cybersecurity (FICS) Research



Skip List Gap Attack

p=1/2 ... 1/2 of all insertions on the first level in a “run”

Goal: Extend this “flat” run

insert Xs < x* < X

insertions

.

Florida Institute for Cybersecurity (FICS) Research



Solution: Localized “Swapping”

Idea: Probabilistically “enforce no long runs”!.

I “Exchange heights” . .

Goal: Extend this “flat” run

Florida Institute for Cybersecurity (FICS) Research



Solution: Localized “Swapping”

Idea: Probabilistically enforce “no long runs”!.

Solution: Adversary can't create such a long run before its length halves with high probability

Florida Institute for Cybersecurity (FICS) Research
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Robust Skip List

- Lazy deletions + localized “swap

+ Lazy deletions prevent trivia e >0 5= a(l + G)log(”)

attacks (1 = palogyp(n) = 1)

< eWra)—(ed*a) 4, T=pC+T-plualogym =1

° S\Na :)S :)reve th ‘Ong ru nS a = 21 +p) and A* is the maximal solution 4 > 0 to (1 —p)e’1 + p(1 —p)e_/IGJF%> +p2 <1

* C log(n) average case target

» Epsilon 1s “artificially” large

<~627%1077

n — 00, € 1S constant
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Robust [reap

- Lazy deletions only

- Lazy deletions prevent trivial m

attacks

_€2Hn
< ne2t+o9 H is the nth harmonic number

* Per-insertion randomizec

driorities prevent creating long
branches inherently

| ' ( 'y =3 X =45 30
- Adaptive adversary still can "attack »
+ 2 In(n) + | average case target < 6.65x 10712

Florida Institute for Cybersecurity (FICS) Research



Future VWork

- lighter bounds
*  Analyze other PSDS

« /ID trees, zi

« Explore other o

N-Z1

D trees, sk

btions for hanc

« |Localized reinitializations

« Explore other structural pro

D gra

DNS, ranc

INng C

omizec

eletions

berties using AAPC

melc

able hea

DS, etcC.

UF

UNIVERSI

FLOR

IDA
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Future Directions
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Vast Ocean of Data Structures

»+ Compositions of Data Structures

. earned’ Data Structures

» Conflict Free Replicated

» Real-world deployments have often not been analyzed for security

Input Negatives Negatives
~—————> Learning Model »{ Backup CBF ———>
ll’ositives ll’ositives

Adversary Resilient Learned Bloom Filters

Ghada Almashaqgbeh!, Allison Bishop?® and Hayder Tirmazi®

! University of Connecticut, ghada@uconn.edu
2 Proof Trading, abishop@ccny.cuny.edu
* City College of New York, hayder.research@gmail.com

Florida Institute for Cybersecurity (FICS) Research

Data lypes

DataCenter 1

__PUT: SYNC: GET X:__
X=1 100ms 1
\_SYNC:
5000ms
SYNC:
" 5000ms
( DataCenter 2
PUT: SYNC: GET X:_
X=2 100ms 2
L
>
Oms 400ms

https://medium.com/@amberovsky/crdt-conflict-free-replicated-data-types-b4bfc8459d26

On the Insecurity of Bloom Filter-Based
Private Set Intersections

Jorrit van Assen*
J.S.VanAssen@tudelft.nl

Jelle Vos*
J.V.Vos@tudelft.nl

Tjitske Koster
T.0.Koster@tudelft.nl

Evangelia Anna Markatou
E.A.Markatou@tudelft.nl

Zekeriya Erkin
Z.Erkin@tudelft.nl

November 22, 2024

~ hash O[LJ10111110
function 1 : :
A onong
S = {0, 07, 03 (O] {1]O]O O
{1 h ESESE _ PIR read 0®
hash OJOFIJOJI L £ -omemememmemeeeees >
function a 110(0111011

Figure 4: Our data structure for private, approximate set membership
with adversarial soundness, when instantiated with a set S consisting

of three strings and with @ = 5 hash functions. We highlight in blue
the bits of the data structure that are set, in red the bits that the query

string ¢ maps to, and in yellow the area covered by the client’s PIR
read, when the client probes the i-th one-hash-function Bloom filter.
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untrusted
client

query

~

¢

result + proof

untrusted

https://mirror.xyz/go-outside.eth/zX1BaGZLHAcQOKdhFnSSMOVW67_-OFCi5ZegGFPryvg

-

Top Hash
hash( 20 )

server

Hash Hash
0 1
hash( . dor ) hash( 13 )
Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash(L1) hash(L2) hash(L3) hash(L4)
L1 L2 L3 L4

https://en.wikipedia.org/wiki/Merkle_tree#/media/File:Hash_Tree.svg
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plenty ot
storage

Data
Blocks

Authenticated Data Structures

hg =
B hi10 =
H(h{mo,OOO, 0 110
H(vyi10, 1)
ho11,011) // \\
hooo = ho11 =
000 011

H(UODO,I) |"|(‘U011,2)

https://eprint.iacr.org/2023/081.pdf

Homomorphic Merkle Trees

Definition 10 (Generalized hash tree). Given functions h : DxD — Rand f : D —
R, a generalized hash tree (T°, A, f, h) is a labeled binary tree (T, \) such that (a) for
allw € T, AM(w) € D; (b) for all internal nodes w € T, f(A(w)) = h(A(w0), A(wl)),
where w0 and w1 are the left and right children of w respectively.

https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_22.pdf
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Pushing the Boundaries

Randomized Algorithms

Machine Learning

Databases and data processing systems

Encrypted databases
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| essons Learned
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What Is security?
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-ormalism I1s Important.
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I he real world 1s messy.
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|radeoffs are unavoidable.
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Adversaries adapt — we must too.
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FINIS
(the end)
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Publications and Other Work

Compact Frequency
Estimators in Adversarial
Environments

‘ SoK: On the Security Goals The DecCert PKI: A
ST of Key Transparency Solution to Decentralized

Systems |dentity Attestation and

- e /00ko’s Triangle®
Probabilistic Data Probabillistic |
On ePrint

Structures in the Wild: A Skipping-Based Data IEEE DAPPS ‘99
Security Analysis of Structures with Robust
Redis* Efficiency Guarantees _ _
Veritiable Summaries to Leveraging Generative
Submitted: CODASPY 25 In progress: CCS 25 Scale Key Transparency Models for Covert

Messaging:
Deployments
S Challenges and Tradeoffs

for “Dead-Drop”
On the Fuzzy Guarantees fes Deployments

of Fuzzy Hashing

CODASPY ‘24
Soon!

*Best paper award
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T hank You! Questions!

Sam A. Markelon
smarkelon@ufl.edu
https://smarky7cd.github.io/
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