

Data Structures in Adversarial Environments

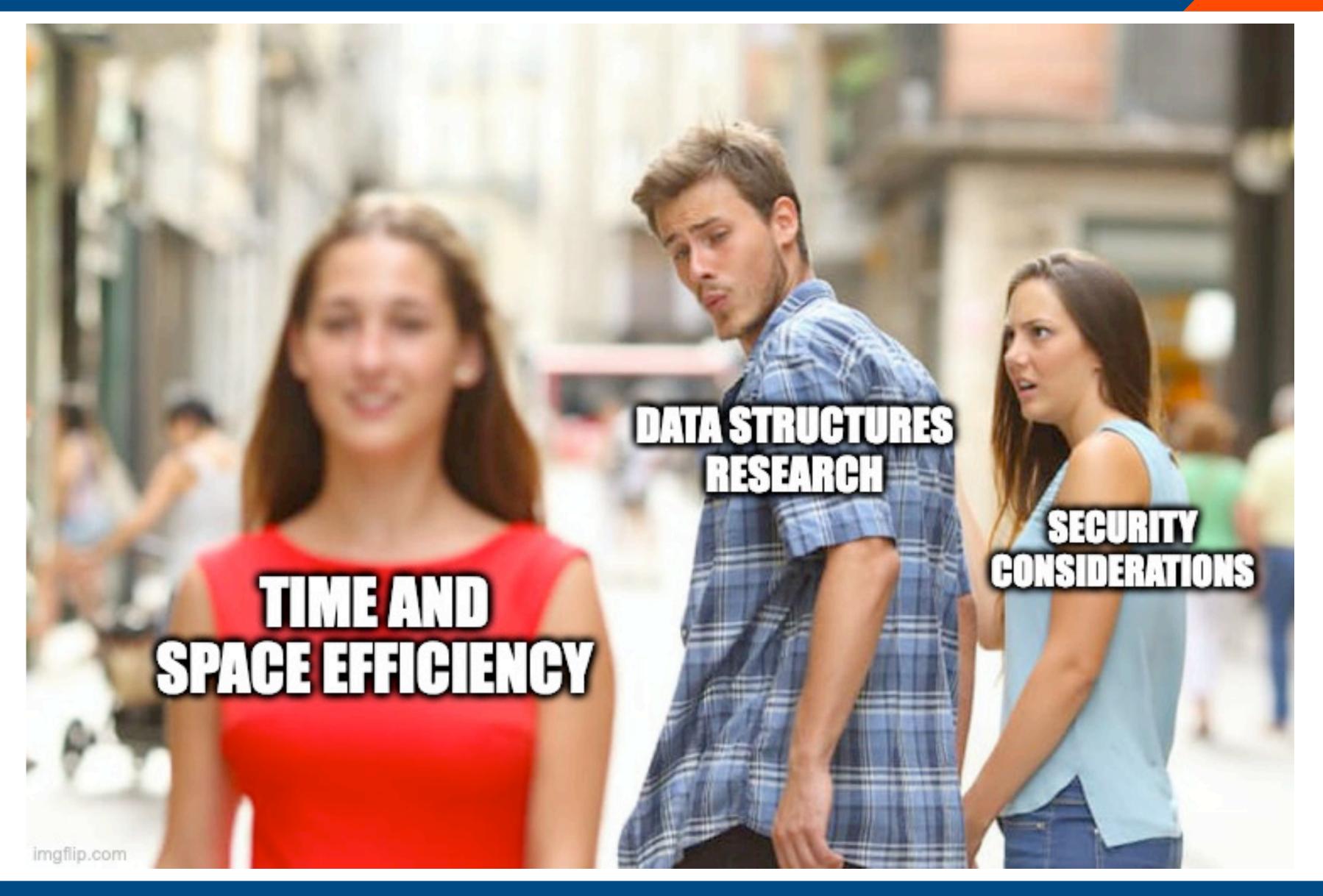
Sam A. Markelon

Dissertation Defense June 19, 2025

What are data structures?

Data structures define **representations** of possibly dynamic (multi)sets along with the **operations** that can be performed on the representation.

A Need for Speed (and Space)



Hash Flood DoS Attacks


```
A: foo
B:bar
C:xyz
```

Insertion of n elements $\sim O(n^2)$

hash(A) = 1

hash(B) = 1

hash(C) = 1

Thesis Statement

For compact frequency estimators (a subclass of compressing probabilistic data structures) and probabilistic skipping-based data structures (including hash tables, skip lists, and treaps), formal adversarial models that capture the adaptive ability of adversaries can be defined under which these structures are demonstrably insecure. Specifically, these models capture scenarios in which an adversary, with knowledge of the structure's parameters, query responses, and, in certain cases, initialization choices and representations, can degrade correctness or performance guarantees beyond acceptable thresholds. It is further claimed that, for these same adversarial models, it is possible to construct new variants of these data structures that are provably robust, with explicit, formal guarantees on their correctness, performance, and security under attack.

Compressing Probabilistic Data Structures

Compactly represent (a stream of) data

and

provide approximate
answers to
queries about the
data

- Frequency estimation

 How many times does x occur in the stream?
 Count-min sketch, Heavy-keeper
- Membership queries
 Is x in the set?
 Bloom filter, Cuckoo filter
- Cardinality estimation

 How many distinct elements in the set?

 HyperLogLog, KMV estimator

Compressing Probabilistic Data Structures

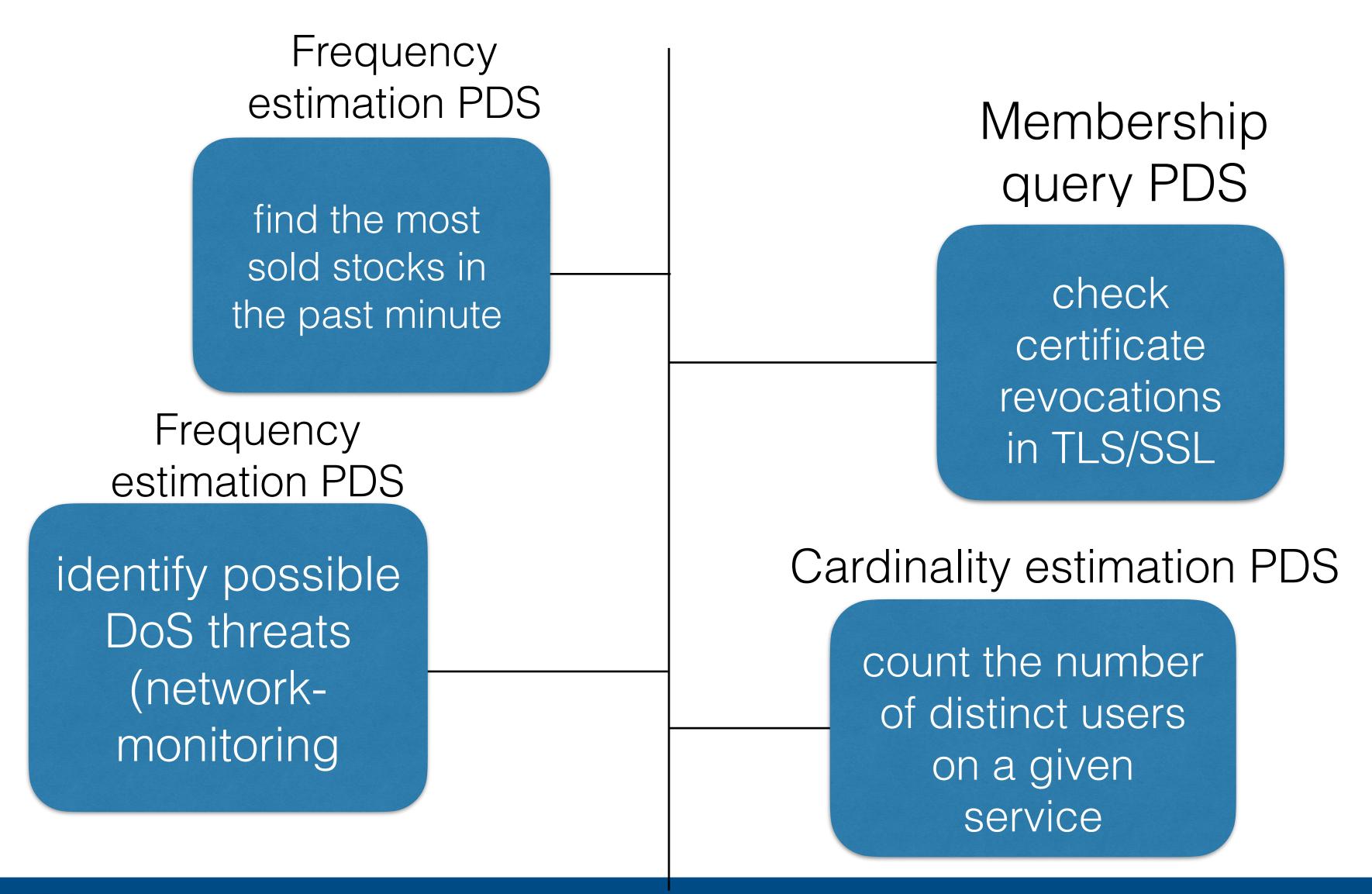
Compactly represent (a stream of) data

and

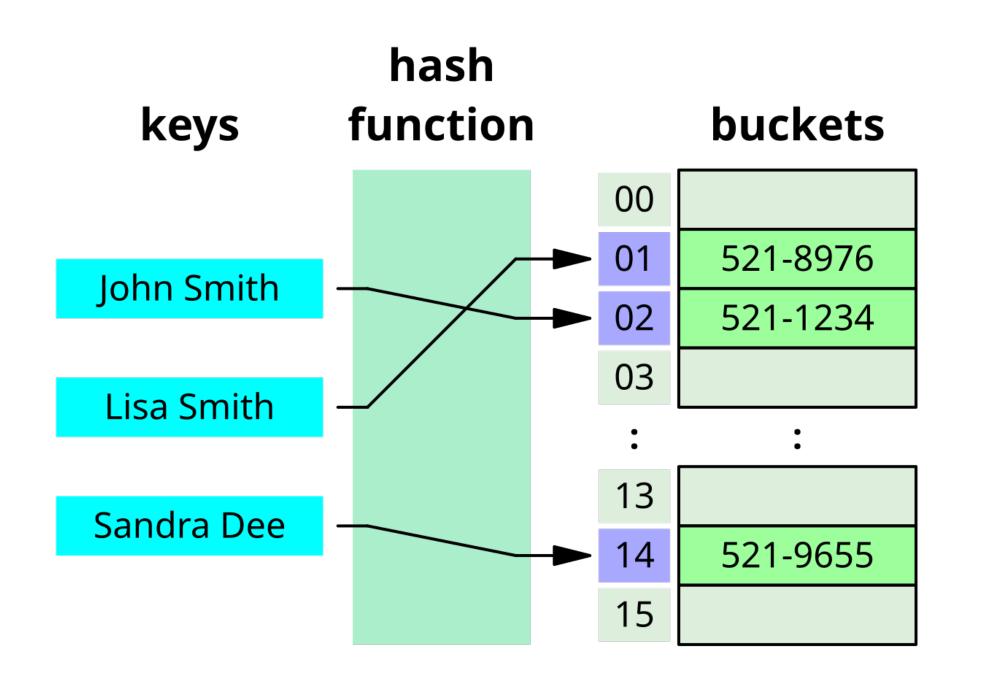
provide approximate
answers to
queries about the
data

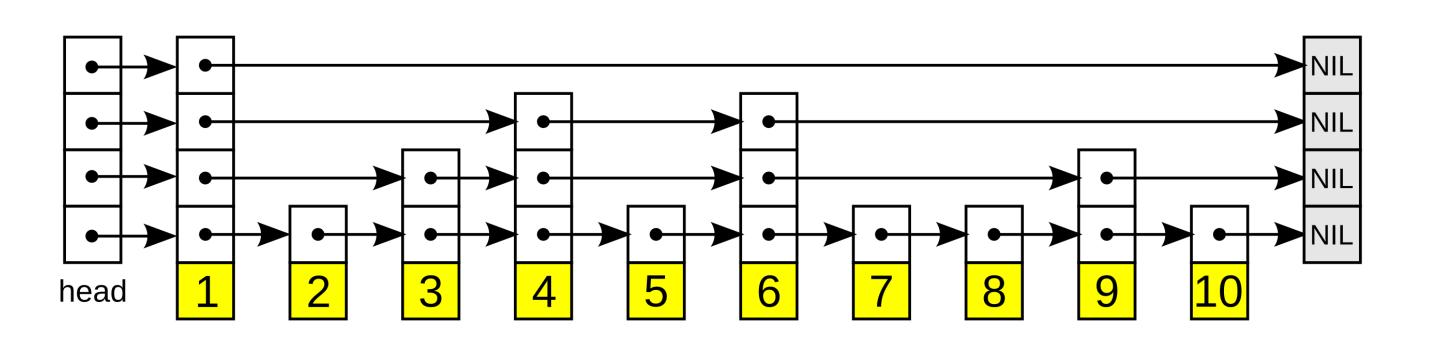
- · Bound on the response error
 - False positive rate for BF
 - Over-estimation bound for CMS
- · Bound is strictly non-adaptive
 - Data does not depend on internal \$\$ of structure

Compressing Probabilistic Data Structures



Probabilistic Skipping-Based Data Structures





Jorge Stolfi, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Jorge Stolfi, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Dissertation Work

Compact Frequency
Estimators in Adversarial
Environments

CCS '23

Probabilistic Data
Structures in the Wild: A
Security Analysis of
Redis

CODASPY '25

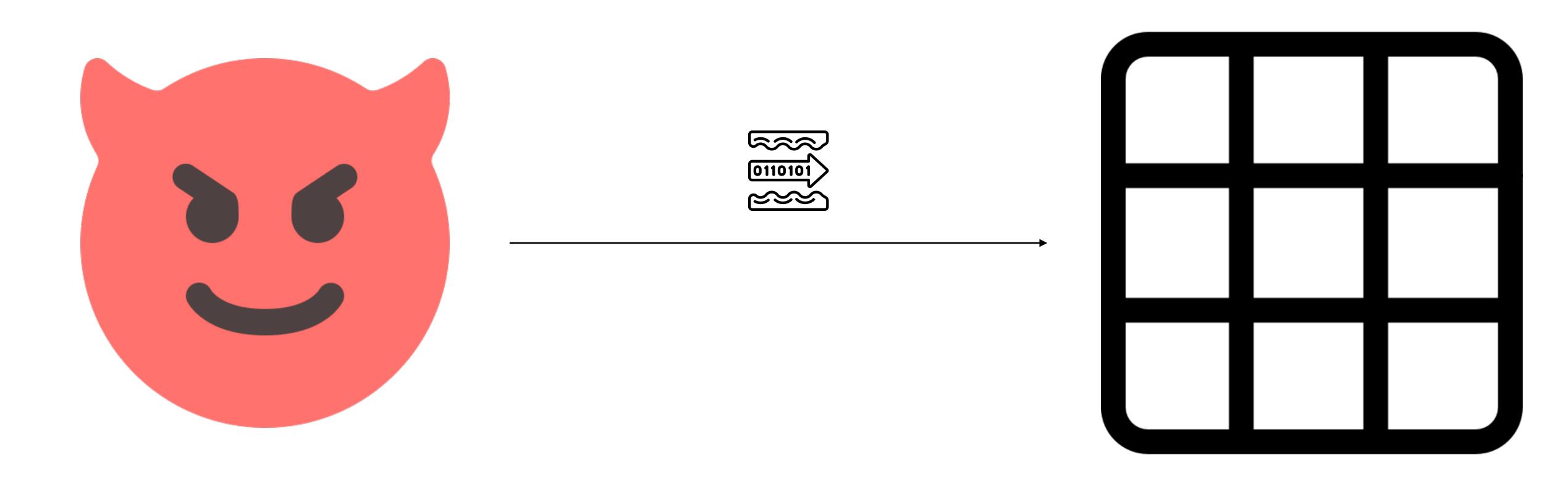
Probabilistic
Skipping-Based Data
Structures with Robust
Efficiency Guarantees

Submitted to CCS '25

Compact Frequency Estimators in Adversarial Environments

Sam A. Markelon, Mia Filić, and Thomas Shrimpton (CCS '23)

Adversarial Correctness of CFE



Adversarial Correctness of CPDS

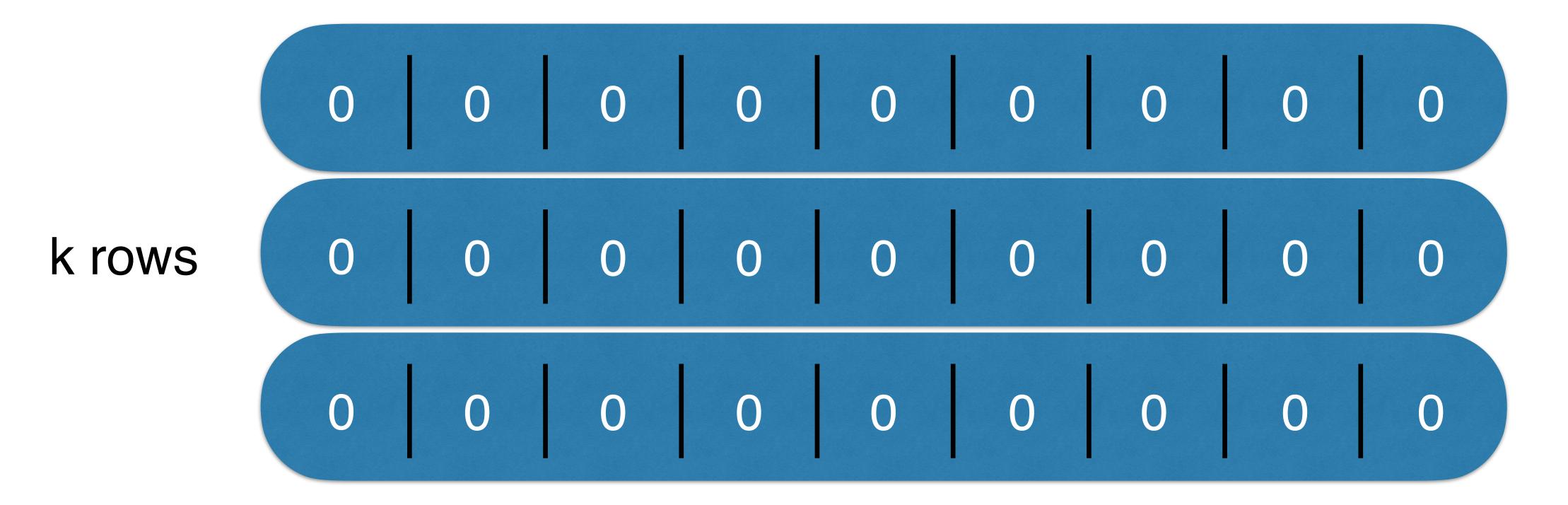
[AuthorsYear]	Structures	Security Proof Style
[NY15]	Bloom filter	Game based
[CPS19]	Bloom Filter Counting Filter Count-min Sketch	Game based
[PR22]	HyperLogLog	Simulation
[FPUV22]	Bloom Filter Cuckoo Filter	Simulation (privacy notions!)
[MFS23]	Count-min Sketch HeavyKeeper	Game based*

Standard hash functions: Large correctness errors

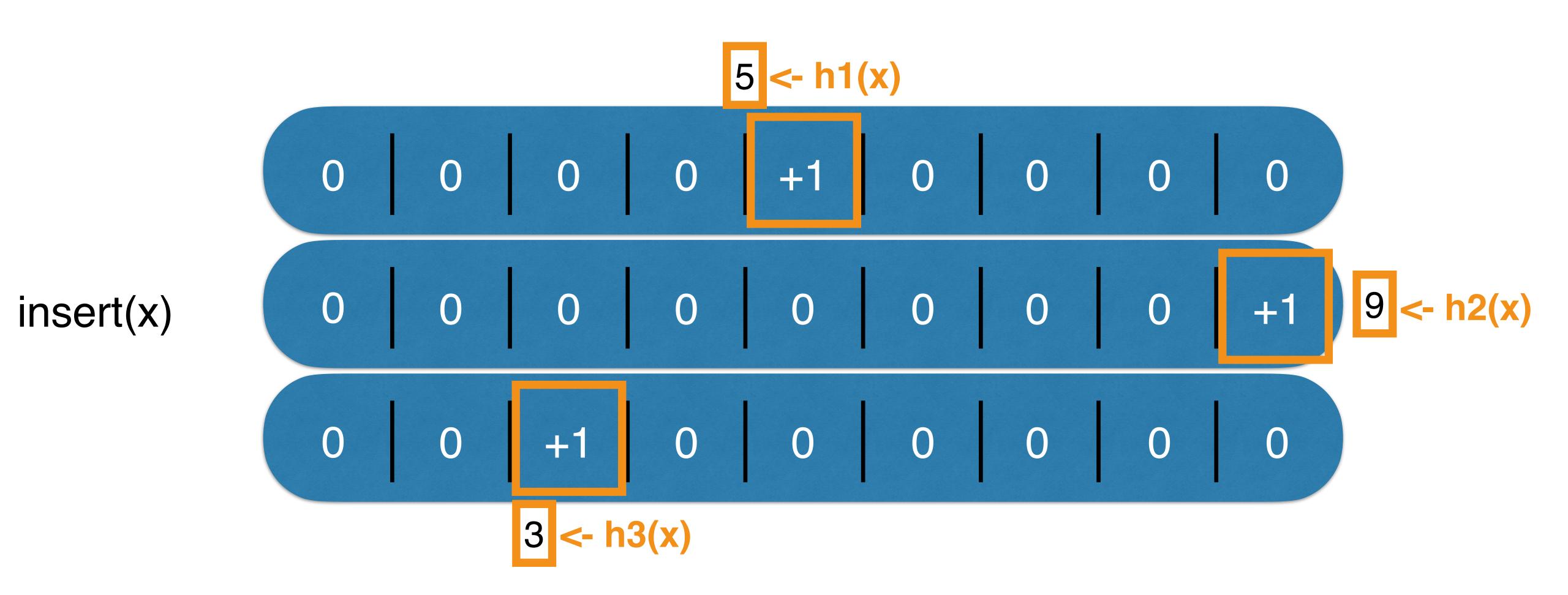
Swap to a keyed primitive:

Adversarial robust structures*

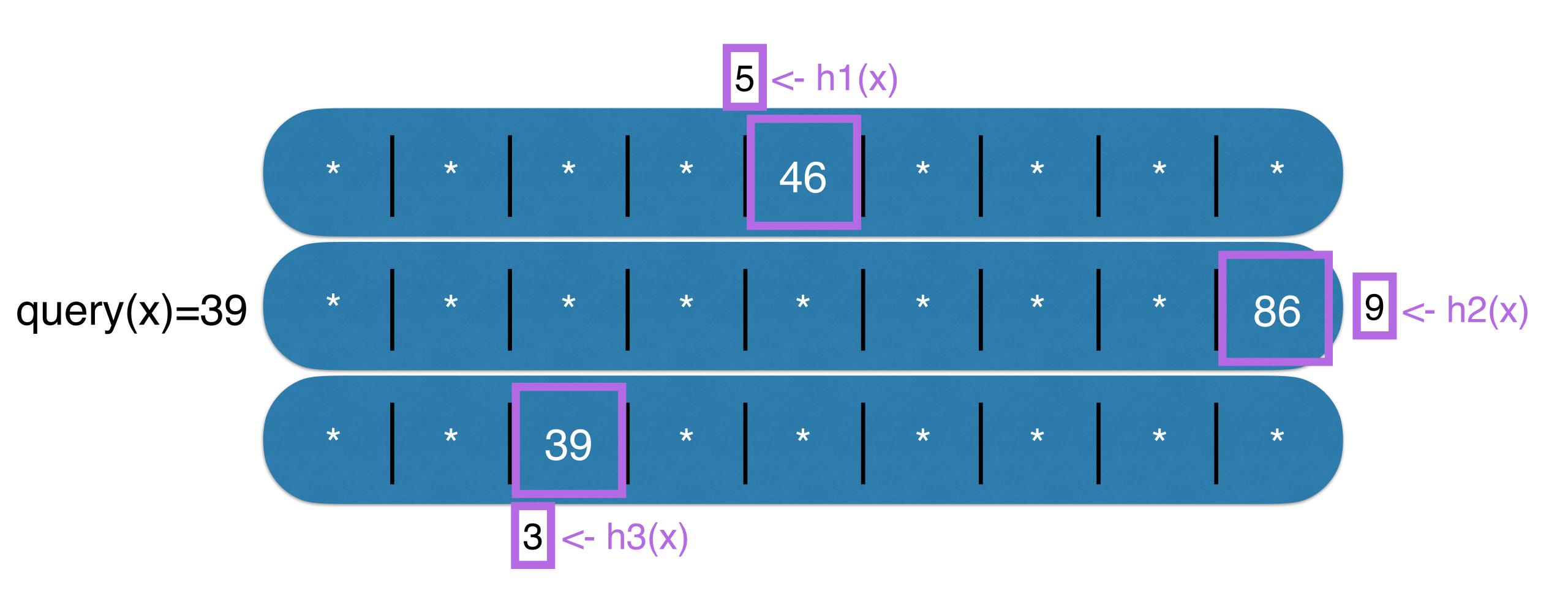
Count-min Sketch (CMS)



CMS Insert



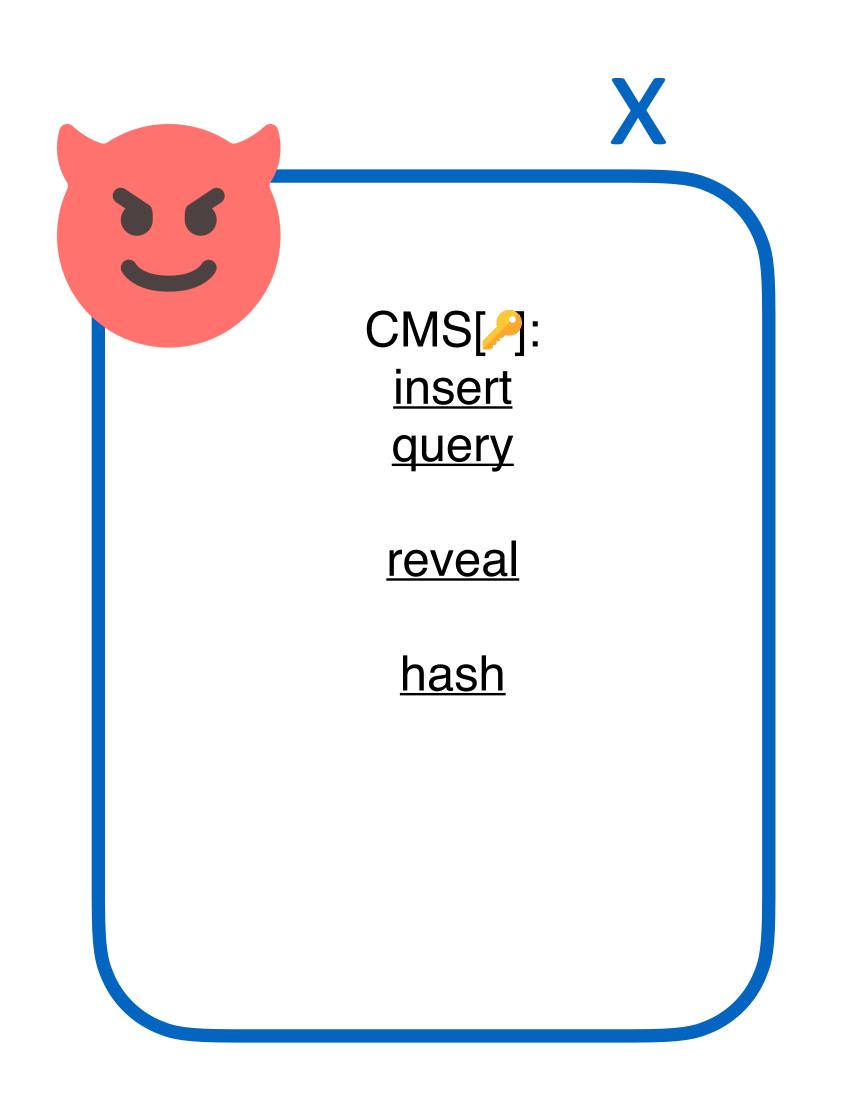
CMS Query



CMS Properties

- Only overestimates
- "Honest Setting" guarantee
- Adversarial setting?

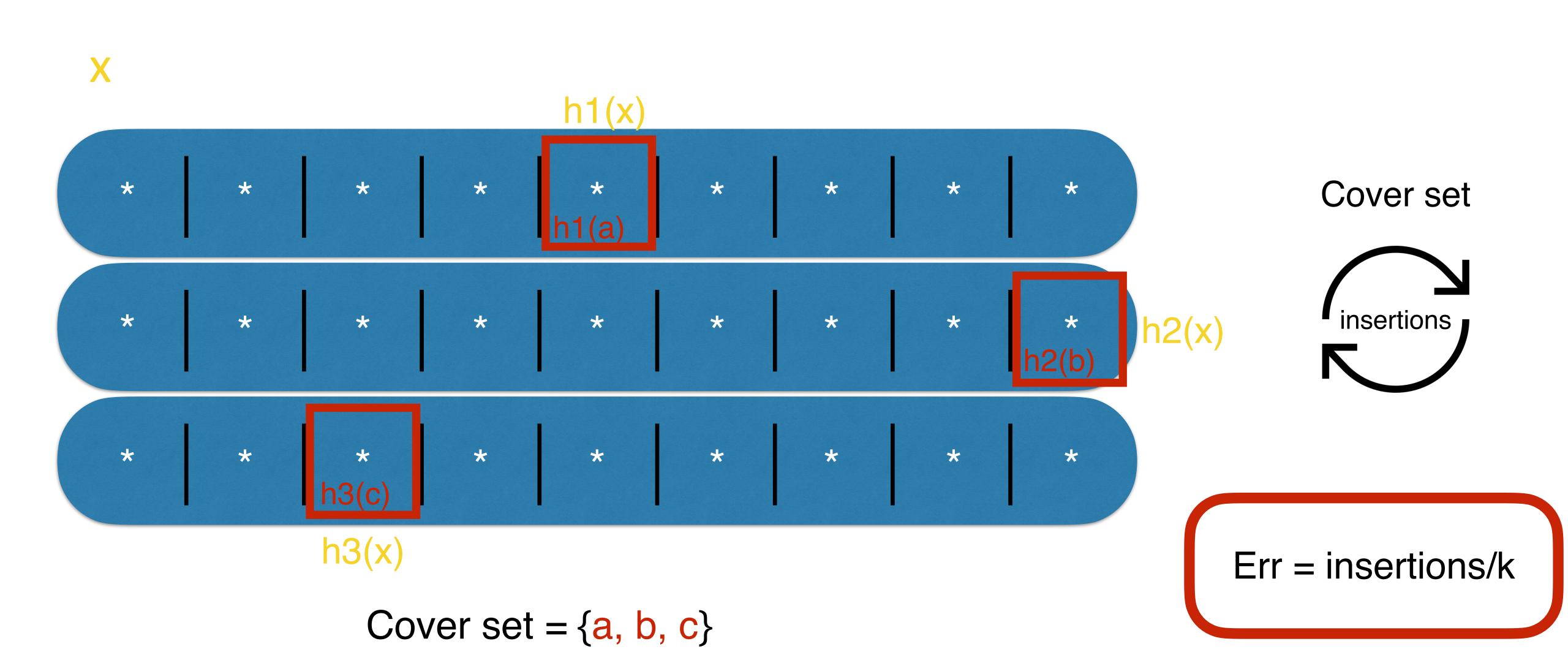
CFE Error Model (simplified)



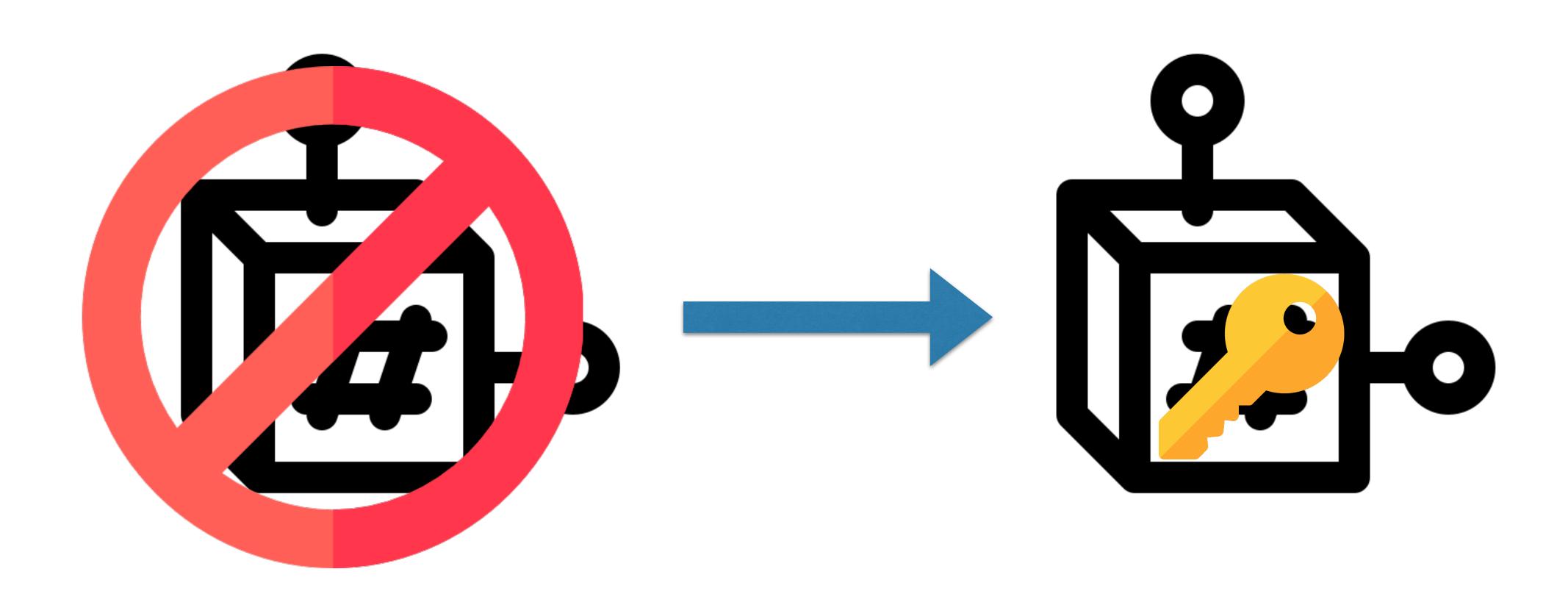
Maximise
CMS error

query(x) >> true_frequency(x)

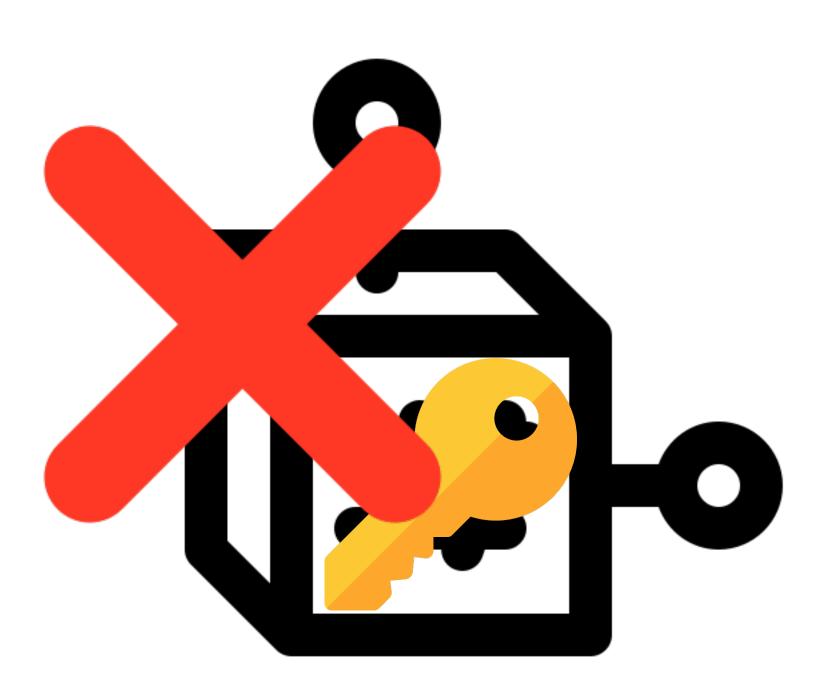
CMS "Public Hash" Attack



CMS Attacks Mitigations



CMS Attacks Mitigations



Still attacks when using a PRF and blackboxed structure!

Existing CFEs are not adversarially robust!

Motivating a more robust CFE

$$cnt = n_x + \sum_{y \in V_x^i} n_y$$

CMS minimizes the "collision noise"

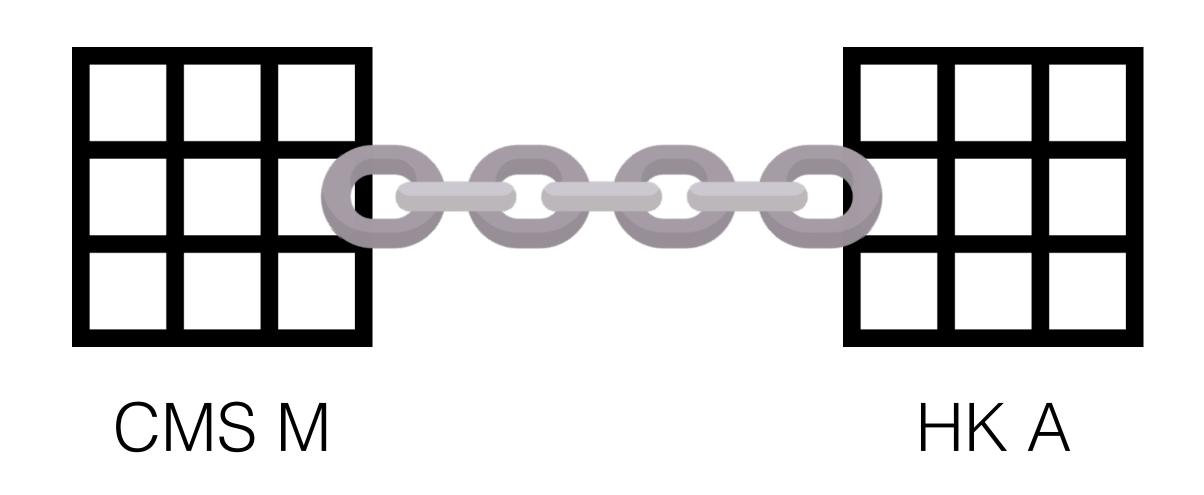


Can we do better? Yes!

Idea: Use information from an auxiliary sketch!

Count-Keeper

- Hybrid between a CMS and HK
- Detects attacks
 - Flagging mechanism
 - Attacks are less damaging
- Works well in practice
 - Honest setting performance



Future Work

- CFE that prevent attacks?
- Other compositions of CPDS?

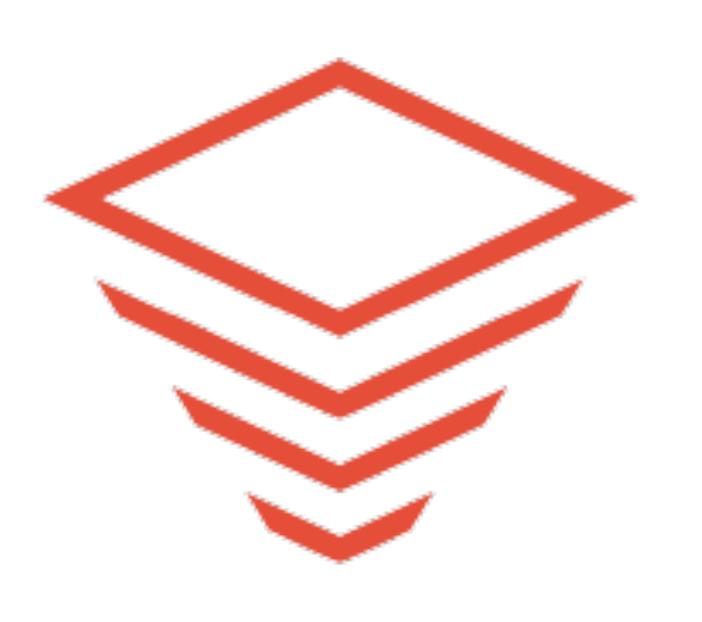
Probabilistic Data Structures in the Wild: A Security Analysis of Redis

Mia Filić, Jonas Hofmann, **Sam A. Markelon**, Kenneth G. Paterson, Anupama Unnikrishnan*

(CODASPY '25 — Best Paper Award)

* Alphabetical Ordering Used

Redis and RedisBloom

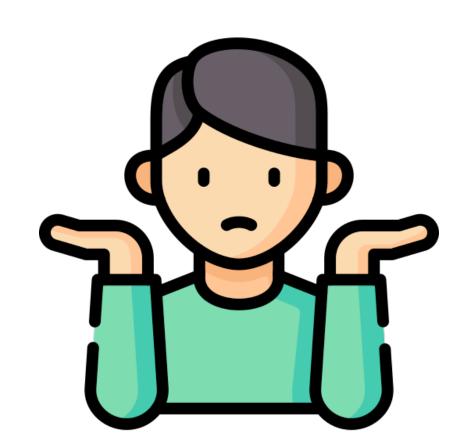


RedisBloom Details

- Open Source
- Widely Used
- Six PDS (We examine four)
 - Bloom Filters, Cuckoo filters, Count-min Sketch, Top-K (HeavyKeeper)
 - HyperLogLog, T-Digest
- Use MurmurHash2 with fixed seeds

Redis Security Model

"...it's totally insecure to let untrusted clients access the system, please protect it from the outside world yourself"



"an attacker might insert data into Redis that triggers pathological (worst case) algorithm complexity on data structures implemented inside Redis internals"

Our Attacks

- Ten different attacks against the four CPDS we consider
 - One against CMS and three against HK
- MurmurHash2 family has fast inversion algorithms!
 - Target hash h and seed s, can generate arbitrarily many x s.t. h = hash(s,x).
 - Due to ASCII formatting constraints need to try ~16 inversions to find a collision
 - Upshot for CFE: Find cover sets very fast!

Use Hash Inversions!

- We have invertible MMH2 in Redis
- Find cover set using inversions!
- Say that we have target x
 - $h_1(x)=25,h_2(x)=278...$
 - Simply compute
 y_I=mmh2_inverse(25,I),
 y_2=mmh2_inverse(278,2)...
- Eliminates our exhaustive search

```
150 - def mmh64A_inverse(h: int, seed: int) -> int:
       """Calculate a one-block inverse of an element using MurmurHash64A
151
152
153 -
       Args:
           h (int): Hash value to invert
154
155
           seed (int): Seed value for the hash
156
157 -
       Returns:
           int: Pre-image for h
       # hashing constants
       m = 0xc6a4a7935bd1e995
       # Multiplicative inverse of m under % 2^64
162
       minv = 0x5f7a0ea7e59b19bd
       r = 47
165
       h = uint64(h \wedge (h >> r))
       h = uint64(h * minv)
       h = uint64(h \wedge (h >> r))
       h = uint64(h * minv)
       hforward = uint64(seed \wedge (8 * m))
       k = uint64(h \wedge hforward)
173
       k = uint64(k * minv)
       k = uint64(k \wedge (k >> r))
176
       k = uint64(k * minv)
177
178
       return k
```

CMS Overestimation Attack

$\epsilon, \delta (m, k)$	Ours	[24]
$2.7 \times 10^{-3}, 1.8 \times 10^{-2}$ $(1024, 4)$	66.85	8533.32
$6.6 \times 10^{-4}, 1.8 \times 10^{-2}$ (4096, 4)	61.11	34133.36
$2.7 \times 10^{-3}, 3.4 \times 10^{-4}$ (1024, 8)	124.22	22264.72
$6.6 \times 10^{-4}, 3.4 \times 10^{-4}$ (4096, 8)	128.8	89058.72

Table 1: Experimental number (average over 100 trials) of equivalent MurmurHash2 calls needed to find a cover for a random target x. We compare the average to the expected number of MurmurHash2 calls needed in the attack of [24], namely kmH_k .

Implement attack from CCS '23 paper far more efficiently!

HKAttacks

- Very efficiently cause frequent elements to "disappear" (CCS '23)
- · Overestimation attacks due to being able to efficiently find fingerprint collisions
- DoS the entire structure
 - Pre-compute elements that map to every counter in the structure
 - Insert them ~100 times each in succession
 - Any subsequent insertions are never recorded

Countermeasures for RedisBloom

- PRF switch for Bloom filter and Cuckoo Filter
- Recall no provably secure CFE that prevents attacks
 - Suggestion: use Count-Keeper with a PRF

Future Work

- Other PDS Suites
 - Google Big Query and Apache Spark
- Extend Provable Security Work to Deployed Variants
- Educate Developers about PDS in Adversarial Environments
- Safe-by-default PDS Libraries

Probabilistic Skipping-Based Data Structures with Robust Efficiency Guarantees

Moritz Huppert, **Sam A. Markelon**, Marc Fischlin* (In Submission: CCS '25)

* Alphabetical Ordering Used

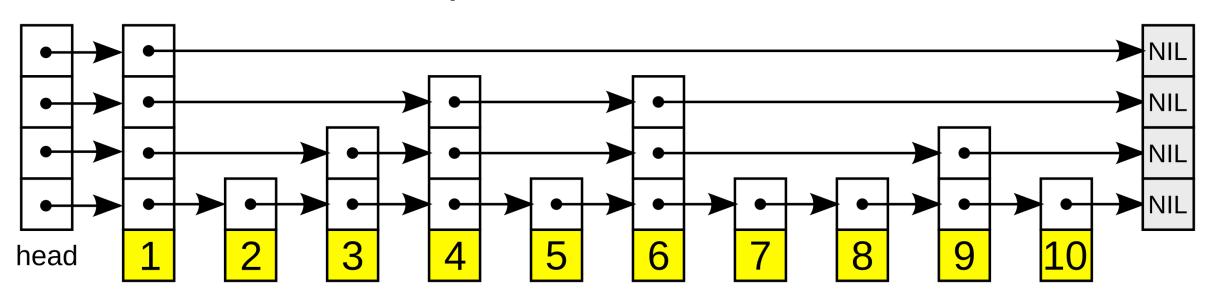
Probabilistic Skipping-Based Data Structures (PSDS)



https://en.wikipedia.org/wiki/Hash_table#/media/File:Hash_table_3_1_1_0_1_0_0_SP.svg

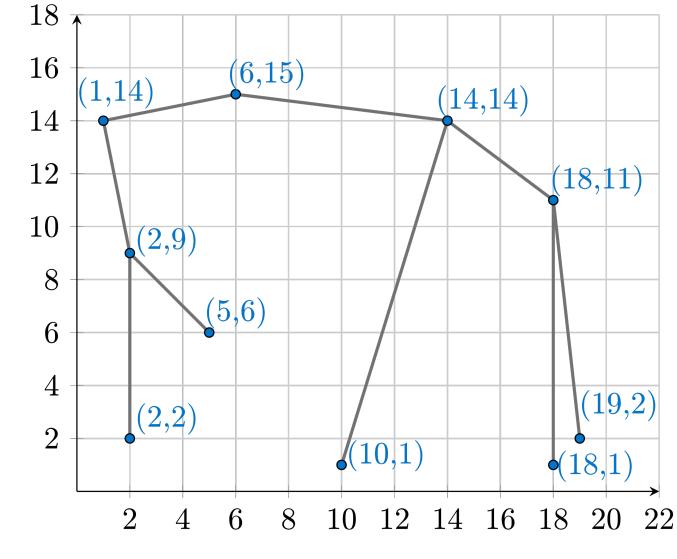
Hash table

Skip list



https://en.wikipedia.org/wiki/Skip_list#/media/File:Skip_list.svg

Treap



https://en.wikipedia.org/wiki/Treap#/media/File:Treap.svg

Why care about PSDS?

- Fast average-case search
 - Dominates update and deletion operation
- What about worst-case runtime?
- We are in the average case with high probability!
 - $\Pr[\text{search cost} \ge \epsilon(\text{average-case search cost})] \le \delta$
 - Under non-adversarial assumptions*

Recall: Hash Flood DoS Attacks


```
A: foo
B:bar
C:xyz
```

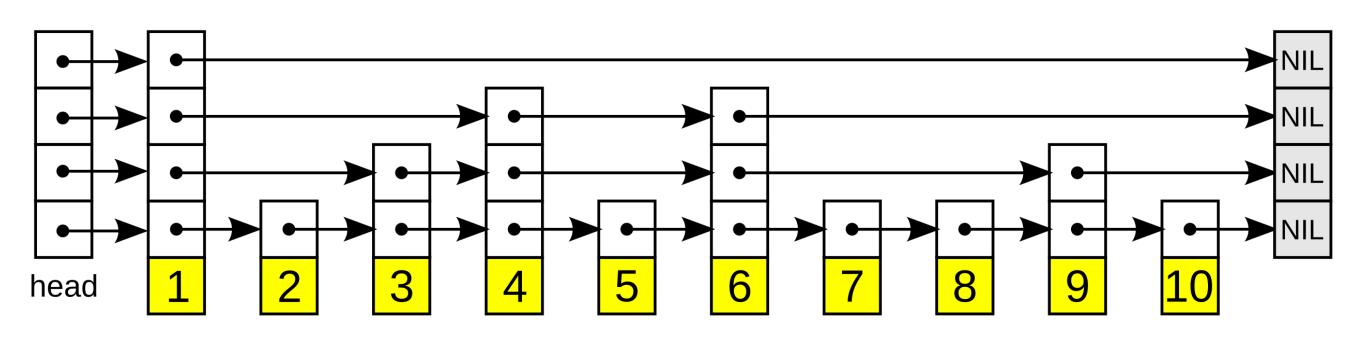
Insertion of n elements $\sim O(n^2)$

hash(A) = 1

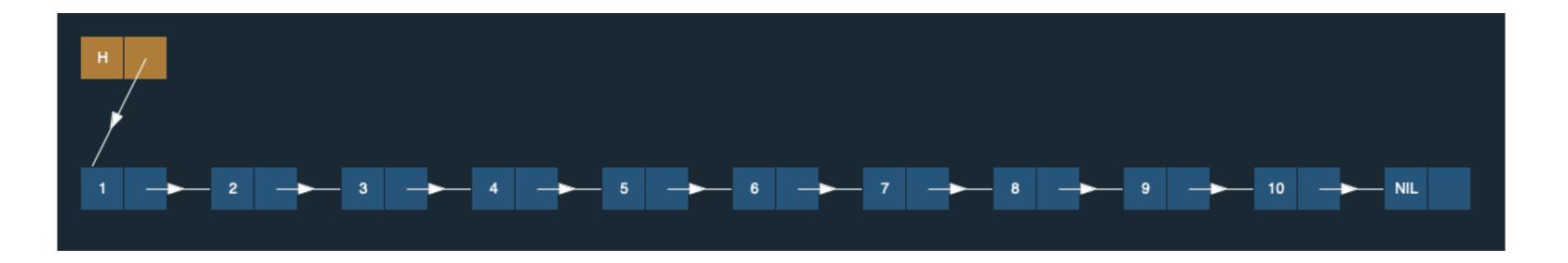
hash(B) = 1

hash(C) = 1

Similar Attacks Against Skip Lists



Jorge Stolfi, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons



Motivating a Security Model

- A plethora of attack papers against hash tables
 - Some of these exploit timing side channels
 - Limited attacks for skip list and treaps
 - Some countermeasures explored
 - No real attempt to formalize a security model
- We consider the strongest adversary
 - Can perform any sequence of operations (wrt to some budget)
 - Has access to the internals of the structure at all times

Conserve Target Properties of the DS

- Want to conserve fast search operation
 - Entirely determined by the representation
- Known "non-adaptive" bounds
 - We care about longest search time
 - Maximum bucket population for HT
 - Maximum search path length for skip list and treap
- Adversary wins in our game if the measured property after their execution **exceeds** the non-adaptive bound by more than some limit

```
HT Maximum Search Path: \phi(D, \text{repr})

1: e \leftarrow 0

2: for i \leftarrow 1 to m

3: \ell \leftarrow \text{length}(T[i])

4: if \ell > e

5: e \leftarrow \ell

6: return e
```

(a) The HT Maximum Search Path function $\phi: \mathcal{D} \times \{0,1\}^* \to \mathbb{R}$. The function iterates through all m buckets, returning the bucket with the greatest population, which is equivalent to the longest search path in the table.

```
TR Maximum Search Path: \phi(D, \text{repr})

1: return \phi^{\text{rec}}(\text{T.root}, 0)

\frac{\phi^{\text{rec}}(n, e)}{1: \text{ if } n = \text{null then}}
2: return

3: e_1 \leftarrow \phi^{\text{rec}}(n[2], e + 1)

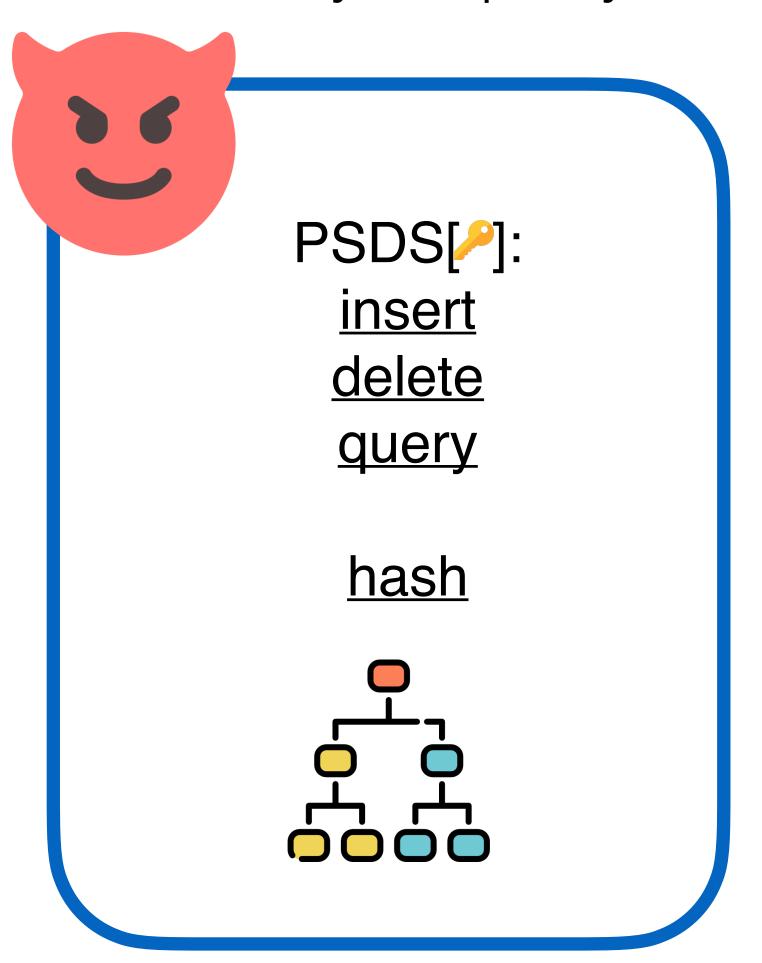
4: e_2 \leftarrow \phi^{\text{rec}}(n[3], e + 1)

5: return \max(e_1, e_2)
```

(b) The TR Maximum Search Path function $\phi: \mathcal{D} \times \{0,1\}^* \to \mathbb{R}$. The function performs an in-order traversal for all elements $d \in D$, returning the longest search path cost among them.

AAPC Security Model

Adaptive Adversary Property Conservation



Maximise Search Path Cost

search time() >> expected search time()

Preserve the Expected Search Path Cost for the "Worst" Search

Probability that the adversary can make a search path cost deviate far from the expected search path cost is small.

Definition 5.1 ((ϕ , β , ϵ , δ , t)-Conserved). We say a skipping-based probabilistic data structure Π is (ϕ , β , ϵ , δ , t)-conserved if the advantage of an AAPC-adversary $\mathcal A$ running in time t is less-than-or-equal to δ for some property function ϕ , some target bound β , some $\epsilon \in \mathbb R$, $\epsilon > 0$, and some $\delta \in [0, 1)$. More precisely, we say the structure is (ϕ , ϵ , β , δ , t)-conserved iff,

$$\mathbf{Adv}^{\mathrm{aapc}}_{\Pi,\phi,\beta,\epsilon}(\mathcal{A}) = \Pr[\mathbf{Exp}^{\mathrm{aapc}}_{\Pi,\phi,\beta,\epsilon}(\mathcal{A}) = 1] \le \delta$$

Towards Robust Structures

No deletions

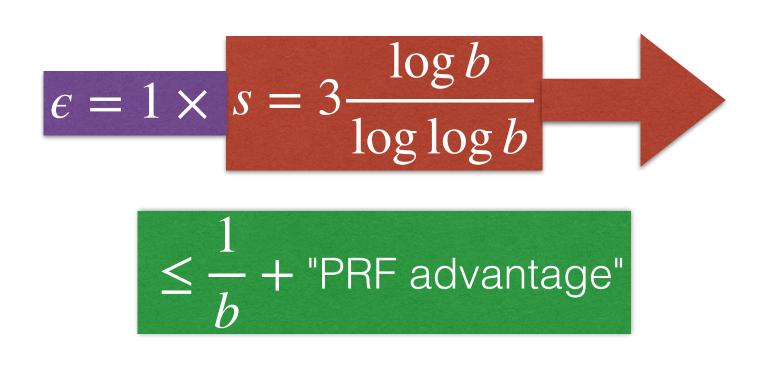
- Replicate functionality by marking elements deleted "lazy" deletion
- Prevents trivial attacks, aligns with usual operational parameters, can be overwritten by fresh insertions

No choosing how or where elements are inserted

- Hash table: PRF instead of hash function
- Skip list: localized "swapping" mechanism
- Treap: inherent robustness!

Robust Hash Table

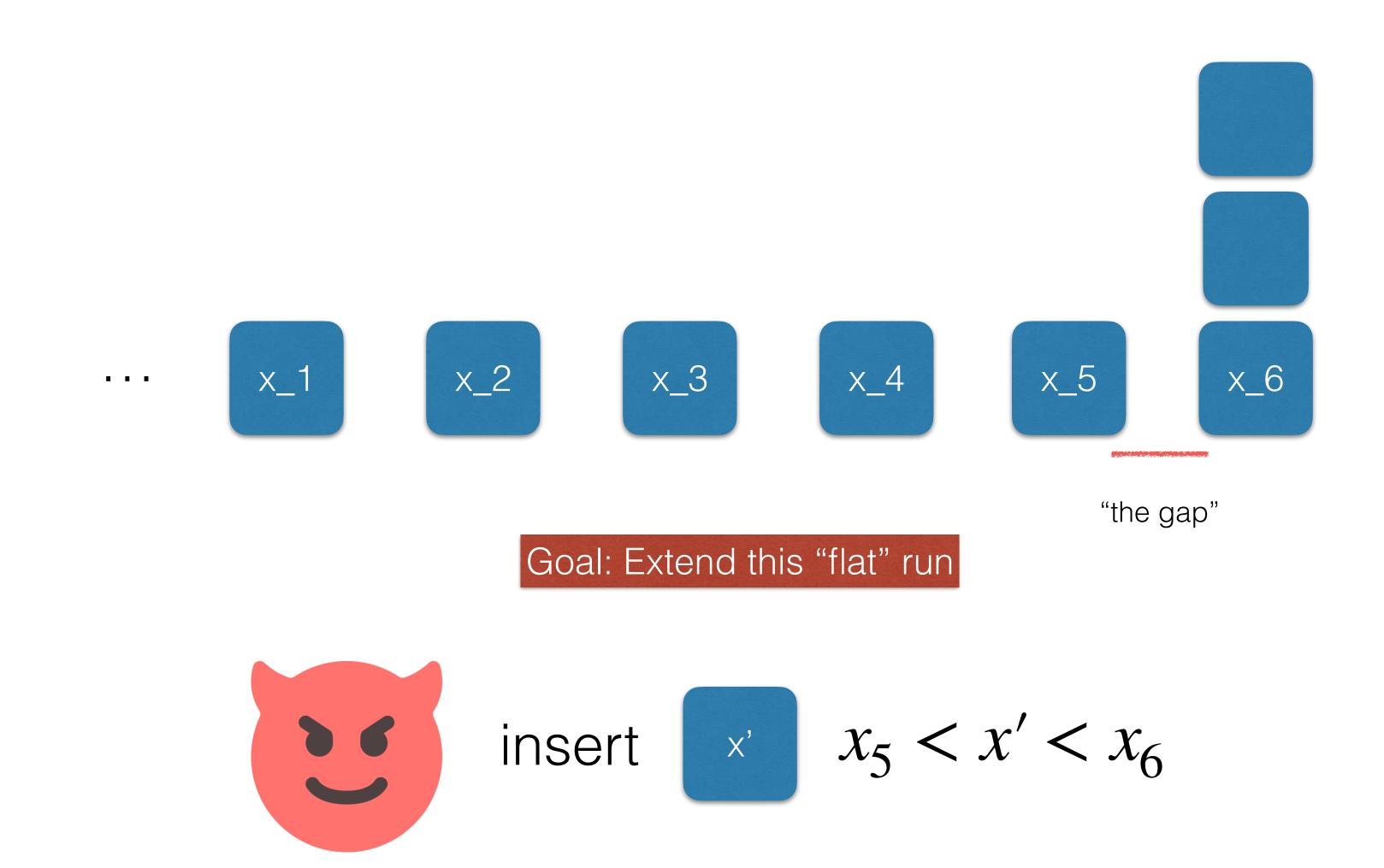
- Lazy deletions + PRF
 - Lazy deletions prevent trivial attacks
 - PRFs prevent hash flood attack
- Ball-in-bins average case target
 - n = b
- Tradeoff between space and robustness

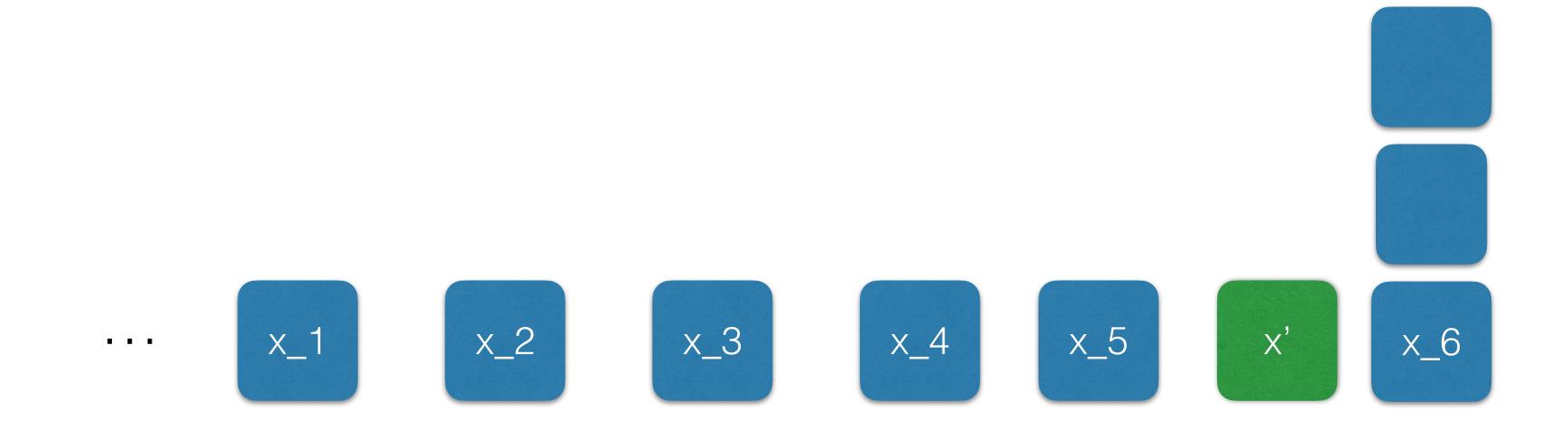


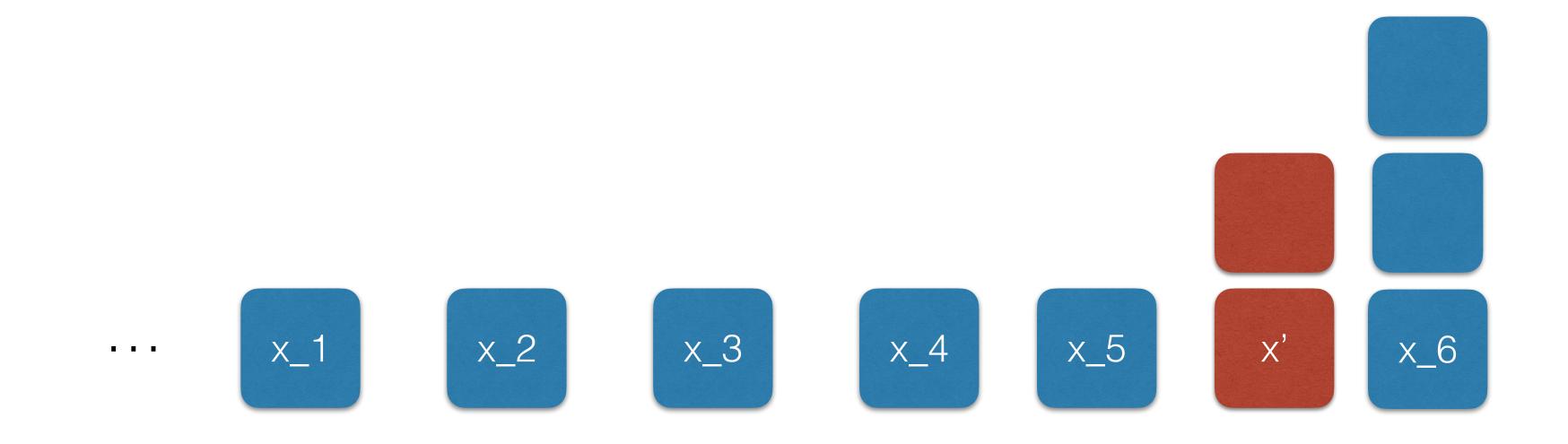
$$b = n = 2^{32}$$

$$\epsilon = 1 \times \approx 21.47$$

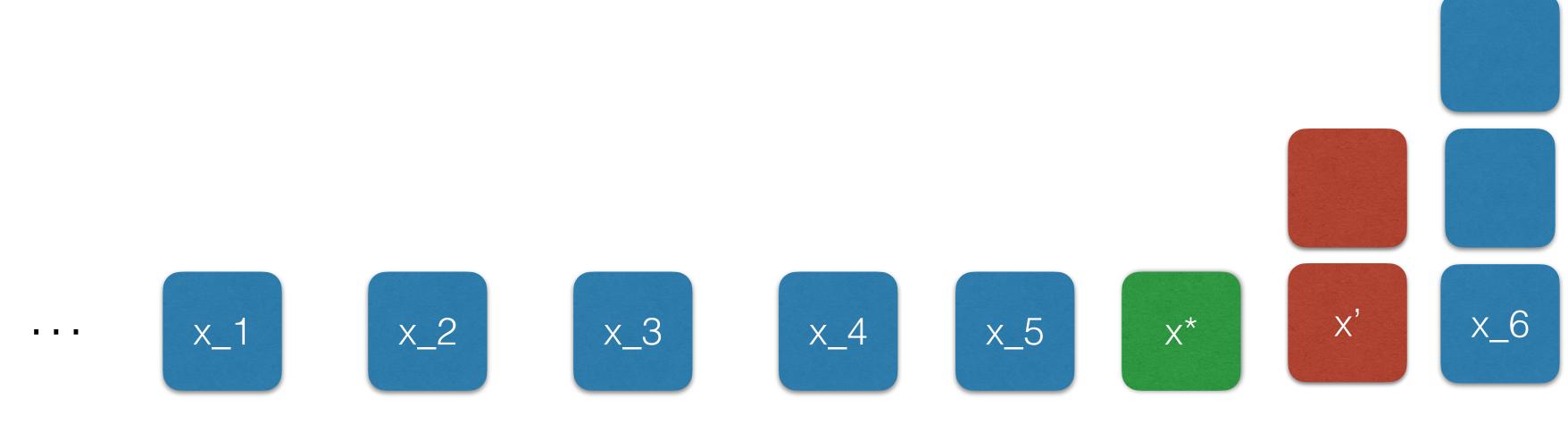
$$\leq \frac{1}{2^{32}}$$
 + "PRF advantage"

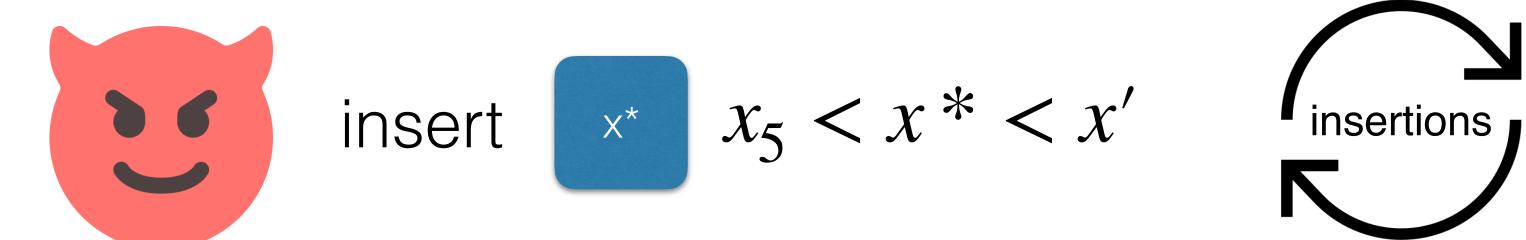






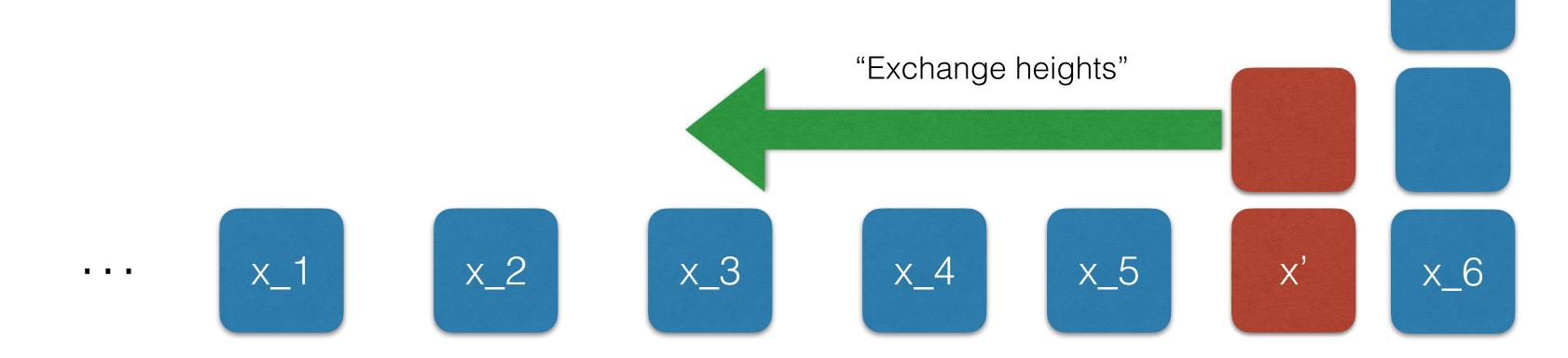
p=1/2 ... 1/2 of all insertions on the first level in a "run"

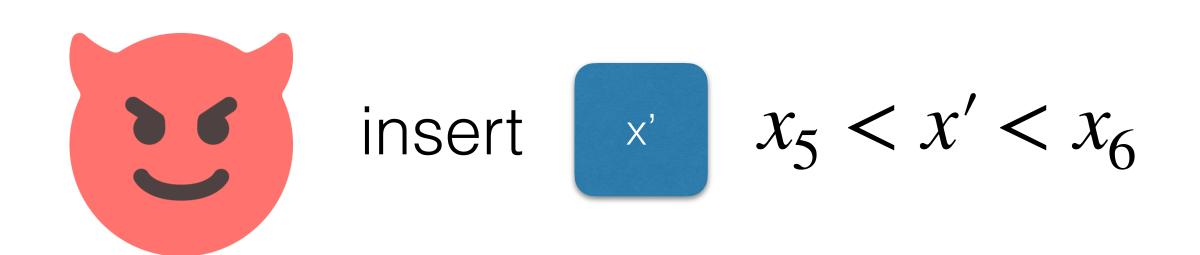




Solution: Localized "Swapping"

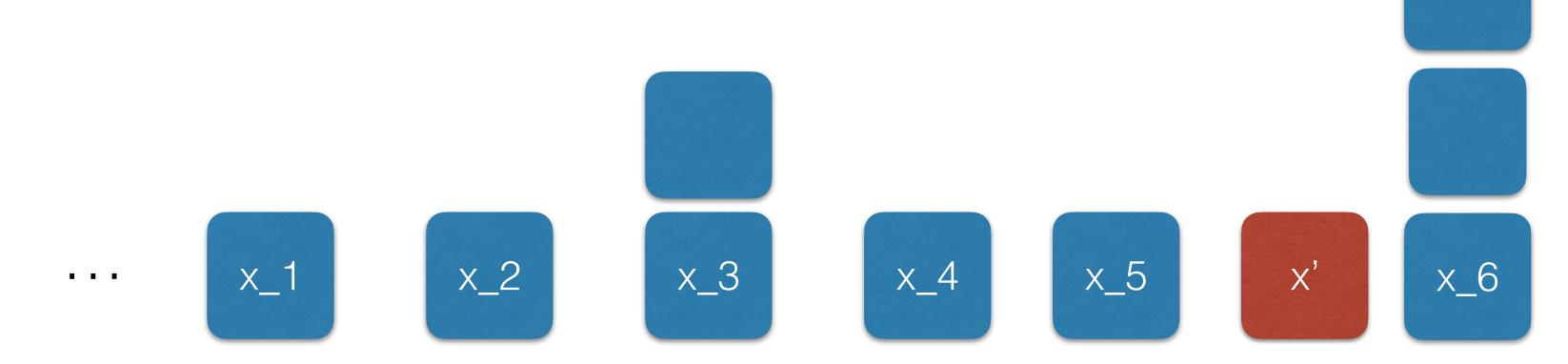
Idea: Probabilistically "enforce no long runs"!





Solution: Localized "Swapping"

Idea: Probabilistically enforce "no long runs"!



Solution: Adversary can't create such a long run before its length halves with high probability

Robust Skip List

- Lazy deletions + localized "swap"
 - Lazy deletions prevent trivial attacks
 - Swaps prevent long runs
- c log(n) average case target
- Epsilon is "artificially" large

$$\varepsilon > 0 \times s = a(1 + \varepsilon)\log(n)$$

$$\leq e^{(\lambda^* a) - (\varepsilon \lambda^* a)} + e^{-\frac{((1-p)a\log_{1/p}(n) - 1)^2}{(1-p)(2 + (1-p)a\log_{1/p}(n) - 1)}}$$

$$a = \frac{2(1+p)}{p} \text{ and } \lambda^* \text{ is the maximal solution } \lambda > 0 \text{ to } (1-p)e^{\lambda} + p(1-p)e^{-\lambda\left(\frac{1}{p} + \frac{a}{2}\right)} + p^2 \le 1$$

$$n = 2^{32}, p = \frac{1}{2} : a = 6, \lambda^* \approx 0.34$$

$$\epsilon = 108 \times 32$$

$$\leq \approx 6.27 \times 10^{-7}$$

 $n \to \infty, \epsilon$ is constant

RobustTreap

- Lazy deletions only
 - Lazy deletions prevent trivial attacks
 - Per-insertion randomized priorities prevent creating long branches inherently
- Adaptive adversary still can "attack"
- 2 ln(n) + l average case target

$$\epsilon > 0 \times s = 2 \ln(n) + 1$$

 $\leq ne^{\frac{-\epsilon^2H_n}{2(1+\epsilon)}}, H_n$ is the nth harmonic number

$$n = 2^{32}, \epsilon = 5$$

$$\epsilon = 5 \times \approx 45.36$$

$$\leq 6.65 \times 10^{-12}$$

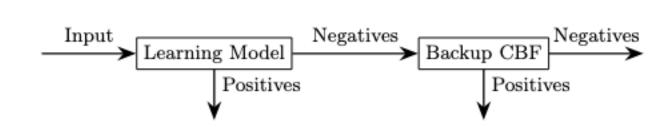
Future Work

- Tighter bounds
- Analyze other PSDS
 - · Zip trees, zip-zip trees, skip graphs, randomized meldable heaps, etc.
- Explore other options for handling deletions
 - Localized reinitializations
- Explore other structural properties using AAPC

Future Directions

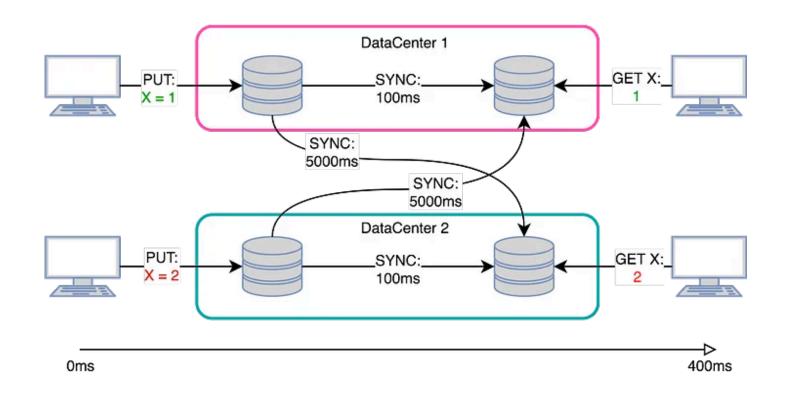
Vast Ocean of Data Structures

- Compositions of Data Structures
- "Learned" Data Structures
- Conflict Free Replicated Data Types
- Real-world deployments have often not been analyzed for security



Adversary Resilient Learned Bloom Filters

Ghada Almashaqbeh¹, Allison Bishop^{2,3} and Hayder Tirmazi³



https://medium.com/@amberovsky/crdt-conflict-free-replicated-data-types-b4bfc8459d26

On the Insecurity of Bloom Filter-Based Private Set Intersections

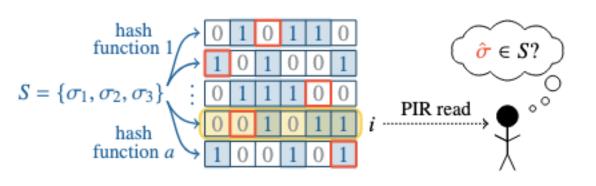


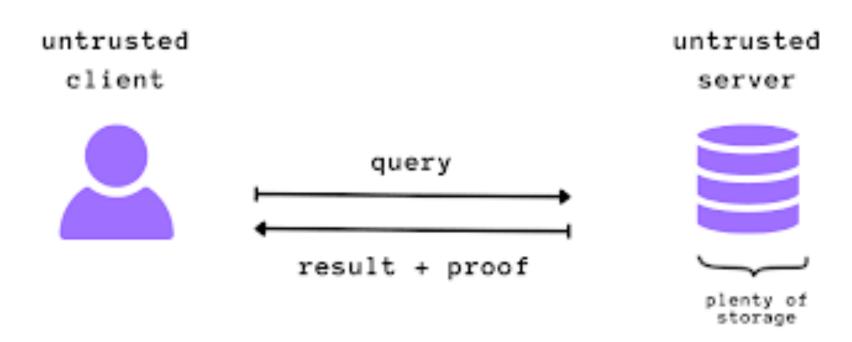
Figure 4: Our data structure for private, approximate set membership with adversarial soundness, when instantiated with a set S consisting of three strings and with a = 5 hash functions. We highlight in blue the bits of the data structure that are set, in red the bits that the query string $\hat{\sigma}$ maps to, and in yellow the area covered by the client's PIR read, when the client probes the i-th one-hash-function Bloom filter.

University of Connecticut, ghada@uconn.edu Proof Trading, abishop@ccny.cuny.edu

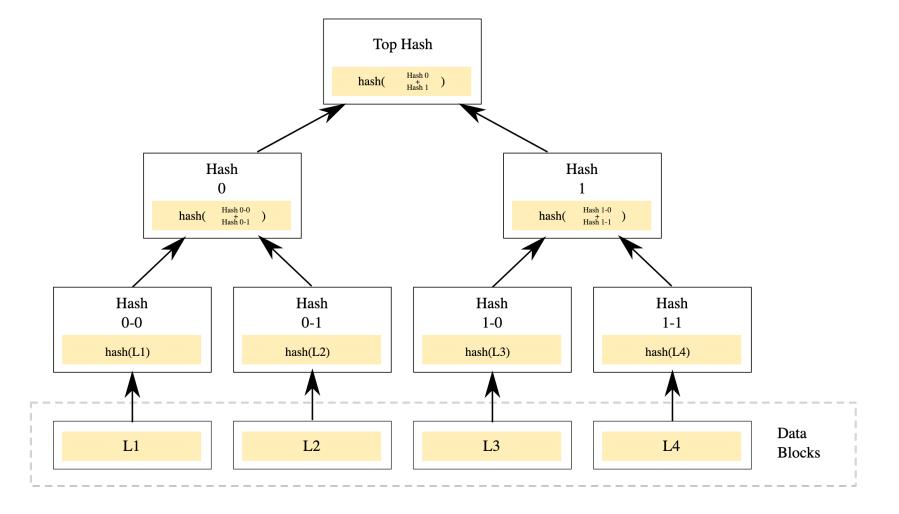
³ City College of New York, hayder.research@gmail.com

Authenticated Data Structures

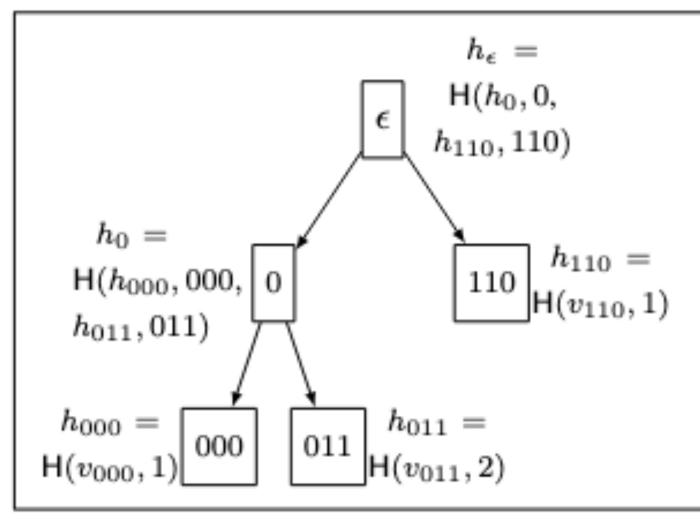
aoZKS



 $https://mirror.xyz/go-outside.eth/z X1BaGZLHAcQOKdhFnSSM0VW67_-OFCi5ZegGFPryvg\\$



https://en.wikipedia.org/wiki/Merkle_tree#/media/File:Hash_Tree.svg



https://eprint.iacr.org/2023/081.pdf

Homomorphic Merkle Trees

Definition 10 (Generalized hash tree). Given functions $h: \mathcal{D} \times \mathcal{D} \to \mathcal{R}$ and $f: \mathcal{D} \to \mathcal{R}$, a generalized hash tree (T, λ, f, h) is a labeled binary tree (T, λ) such that (a) for all $w \in T$, $\lambda(w) \in \mathcal{D}$; (b) for all internal nodes $w \in T$, $f(\lambda(w)) = h(\lambda(w0), \lambda(w1))$, where w0 and w1 are the left and right children of w respectively.

https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_22.pdf

Pushing the Boundaries

- Randomized Algorithms
- Machine Learning
- Databases and data processing systems
 - Encrypted databases

Lessons Learned

What is security?

Formalism is important.

The real world is messy.

Tradeoffs are unavoidable.

Adversaries adapt — we must too.

Finis
(the end)

Publications and Other Work

Compact Frequency
Estimators in Adversarial
Environments

CCS '23

Probabilistic Data
Structures in the Wild: A
Security Analysis of
Redis*

Submitted: CODASPY '25

On the Fuzzy Guarantees of Fuzzy Hashing

Soon!

Probabilistic
Skipping-Based Data
Structures with Robust
Efficiency Guarantees

In progress: CCS '25

SoK: On the Security Goals of Key Transparency
Systems

On ePrint

Verifiable Summaries to Scale Key Transparency Deployments

Soon!

The DecCert PKI: A
Solution to Decentralized
Identity Attestation and
Zooko's Triangle*

IEEE DAPPS '22

Leveraging Generative
Models for Covert
Messaging:
Challenges and Tradeoffs
for "Dead-Drop"
Deployments

CODASPY '24

*Best paper award

Thank You! Questions?



