Secure Data Structures Sam A. Markelon Thesis Proposal December 4, 2024

What are data structures?

Data structures define **representations** of possibly dynamic (multi)sets along with the operations that can be performed on the representation.

A Need for Speed (and Space)

SPACE HIGHNEY

imgflip.com

Florida Institute for Cybersecurity (FICS) Research

DATA STRUCTURES RESEARCH

SECURITY CONSIDERATIONS

Hash Flood DoS Attacks

Florida Institute for Cybersecurity (FICS) Research

Thesis Statement Summary

- Security of data structures is an afterthought
- Increasing use of data structures in adversarial environments
- Preliminary security results for data structures are overwhelmingly negative

Let's use the provable security framework

- Formal evaluation
- Define attack models and goals
- Design new provably secure structures
- Analyze security and performance tradeoffs

Probabilistic Data Structures

Compactly represent (a stream of) data

and

provide approximate answers to queries about the data

Florida Institute for Cybersecurity (FICS) Research

ullet

ullet

Frequency estimation How many times does x occur in the stream? **Count-min sketch, Heavy-keeper**

Membership queries Is x in the set? **Bloom filter, Cuckoo filter**

<u>Cardinality estimation</u> How many distinct elements in the set? HyperLogLog, KMV estimator

Probabilistic Data Structures

Compactly represent (a stream of) data

and

provide approximate answers to queries about the data

Florida Institute for Cybersecurity (FICS) Research

Bound on the response error

- False positive rate for BF
- Over-estimation bound for CMS ullet
- Bound is strictly non-adaptive
 - Data does not depend on internal \$\$ of structure •

Probabilistic Data Structures

Frequency estimation PDS

find the most sold stocks in the past minute

Frequency estimation PDS

identify possible DoS threats (networkmonitoring

Florida Institute for Cybersecurity (FICS) Research

Membership query PDS

check certificate revocations in TLS/SSL

Cardinality estimation PDS

count the number of distinct users on a given service

Skipping Data Structures

Jorge Stolfi, CC BY-SA 3.0 < https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Florida Institute for Cybersecurity (FICS) Research

Jorge Stolfi, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Verifiable Data Structures

By Azaghal - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=18157888

Florida Institute for Cybersecurity (FICS) Research

Thesis Work

Compact Frequency Estimators in Adversarial Environments

CCS '23

Probabilistic Data Structures in the Wild: A Security Analysis of Redis

Submitted: CODASPY '25

In progress: CCS '25

Florida Institute for Cybersecurity (FICS) Research

Skipping Data Structures in Adversarial Environments

A Formal Treatment of Key Transparency Systems with Scalability Improvements

Submitted: S&P '25

Compact, Private, and Verifiable Data Structures

In progress: TBD '25

Compact Frequency Estimators in Adversarial Environments

Sam A. Markelon, Mia Filić, and Thomas Shrimpton (CCS '23)

Adversarial Correctness of CFE

Adversarial Correctness of PDS

[AuthorsYear]	Structures	
[NY15]	Bloom filter	
[CPS19]	Bloom Filter Counting Filter Count-min Sketch	
[PR22]	HyperLogLog	
[FPUV22]	Bloom Filter Cuckoo Filter	(
[MFS23]	Count-min Sketch HeavyKeeper	

Florida Institute for Cybersecurity (FICS) Research

ecurity Proof Style

Game based

Game based

Simulation

Simulation privacy notions!)

Game based*

Standard hash functions: Large correctness errors

Swap to a keyed primitive: Adversarial robust structures*

Count-min Sketch (CMS)

Florida Institute for Cybersecurity (FICS) Research

m columns

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

CMS Insert

|3| < h3(x)

CMS Query

CMS Properties

- Only overestimates
- "Honest Setting" guarantee
- Adversarial setting?

CFE Error Model (simplified)

Florida Institute for Cybersecurity (FICS) Research

Maximise CMS error

query(x) >> true_frequency(x)

CMS "Public Hash" Attack

Cover set = $\{a, b, c\}$

CMS Attacks Mitigations

Florida Institute for Cybersecurity (FICS) Research

CMS Attacks Mitigations

Still attacks when using a PRF and blackboxed structure!

Florida Institute for Cybersecurity (FICS) Research

Existing CFEs are not adversarially robust!

Motivating a more robust CFE

Florida Institute for Cybersecurity (FICS) Research

CMS minimizes the "collision noise"

Can we do better? Yes!

Idea: Use information from an auxiliary sketch!

Count-Keeper

- Hybrid between a CMS and HK
- Detects (does prevent) attacks
 - Flagging mechanism
 - Attacks are less damaging
- Works well in practice
 - Honest setting performance

6666

CMS M

HK A

Adversarially Robust CFE?

By Javier Yaya Tur (CAC, S. A.), CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=23971602

Florida Institute for Cybersecurity (FICS) Research

Probabilistic Data Structures in the Wild: A Security Analysis of Redis

Mia Filić, Jonas Hofmann, **Sam A. Markelon**, Kenneth G. Paterson, Anupama Unnikrishnan* (Submitted to CODASPY '25)

* Alphabetical Ordering Used

Redis and RedisBloom

Florida Institute for Cybersecurity (FICS) Research

RedisBloom Details

- Open Source
- Widely Used
- Six PDS (We examine four)

 - HyperLogLog, T-Digest
- Use MurmurHash2 with fixed seeds

Bloom Filters, Cuckoo filters, Count-min Sketch, Top-K (HeavyKeeper)

Redis Security Model

"... it's totally insecure to let **untrusted clients access the system**, please protect it from the outside world yourself"

Florida Institute for Cybersecurity (FICS) Research

"an attacker might insert data into Redis that triggers pathological (worst case) algorithm complexity on data structures implemented inside Redis internals"

Our Attacks

- Ten different attacks against the four PDS we consider
 - One against CMS and three against HK
- MurmurHash2 family has fast inversion algorithms!
 - Target hash h and seed s, can generate arbitrarily many x s.t. h = hash(s,x).
 - Due to ASCII formatting constraints need to try ~ 16 inversions to find a collision
 - **Upshot for CFE: Find cover sets very fast!**

CMS Overestimation Attack

$\epsilon, \delta(m, k)$	Ours	[24]
$2.7 \times 10^{-3}, 1.8 \times 10^{-2}$ (1024, 4)	66.85	8533.32
$6.6 \times 10^{-4}, 1.8 \times 10^{-2}$ (4096, 4)	61.11	34133.36
$2.7 \times 10^{-3}, 3.4 \times 10^{-4}$ (1024, 8)	124.22	22264.72
$6.6 \times 10^{-4}, 3.4 \times 10^{-4}$ (4096, 8)	128.8	89058.72

Table 1: Experimental number (average over 100 trials) of equivalent MurmurHash2 calls needed to find a cover for a random target x. We compare the average to the expected number of MurmurHash2 calls needed in the attack of [24], namely kmH_k .

Implement attack from CCS '23 paper far more efficiently!

Florida Institute for Cybersecurity (FICS) Research

HK Attacks

- Very efficiently cause frequent elements to "disappear" (CCS '23)
- Overestimation attacks due to being able to efficiently find fingerprint collisions
- DoS the entire structure
 - Pre-compute elements that map to every counter in the structure • Insert them ~ 100 times each in succession

 - Any subsequent insertions are never recorded

Countermeasures for RedisBloom

- PRF switch for Bloom filter and Cuckoo Filter
- Recall no provably secure CFE
 - Suggestion: use Count-Keeper with a PRF

Skipping Data Structures in Adversarial Environments

Moritz Huppert, **Sam A. Markelon**, Marc Fischlin* (In progress.Target: CCS '25)

* Alphabetical Ordering Used

Recall: Hash Flood DoS Attacks

Florida Institute for Cybersecurity (FICS) Research

Similar Attacks Against Skip Lists

Florida Institute for Cybersecurity (FICS) Research

Motivating a Security Model

- A plethora of attack papers against hash tables and skip lists
 - No real attempt to formalize a security model
 - Some countermeasures explored
 - Some of these exploit timing side channels
- Consider the strongest adversary
 - Can perform any sequence of operations (wrt to some budget) • Has access to the internals of the structure at all times

Conserve Target Properties of the DS

- Want to conserve fast search operation
 - Entirely determined by the representation
- Known "non-adaptive" bounds
 - Maximum bucket population for HT
 - Maximum search path length for skip list
- Adversary wins in our game if the measured property after their execution exceeds the non-adaptive bound by more than some limit

HT Maximum Bucket Population: $\phi(D, repr)$ 1: $e \leftarrow 0$ for $i \leftarrow 1$ to m $\ell \leftarrow \text{length}(T[i])$ if $\ell > e$ $e \leftarrow l$ 6: return e

Figure 2: The HT Maximum Bucket Population function $\phi : D \times \{0, 1\}^* \rightarrow \mathbb{R}$.

Towards Robust Structures

- No deletions •
 - Replicate functionality by marking elements deleted
- No choosing how or where elements are inserted

Initial Results

- Robust Hash Table
 - Swap hash functions for a PRF and do not allow deletions
- Robust Skip List
 - Cannot use a PRF destroys order!
 - •

Robust Treap

Inherently robust with no deletions

Deterministic swapping mechanism that "heals" the structure and ND

Outstanding Work

- Generalize these results?
 - Skipping data structures as a sequence of iid random variables
- Formal proofs
 - Skip list and treap
- Analyze operational effects of our mitigations

A Formal Treatment of Key Transparency Systems with Scalability Improvements Nicholas Brandt, Mia Filić, Sam A. Markelon* (Submitted: S&P '25)

* Alphabetical Ordering Used

Florida Institute for Cybersecurity (FICS) Research

E2E Encrypted Messaging

Florida Institute for Cybersecurity (FICS) Research

(SP)

SK

SP Maintained Key Directory

Request PK of Alice

User ID

Alice

Bob

. . .

Florida Institute for Cybersecurity (FICS) Research

Alice

Undetectable MitM Attack!

Florida Institute for Cybersecurity (FICS) Research

SK

Traditional Approaches

Florida Institute for Cybersecurity (FICS) Research

Enter Key Transparency!

- Require service provider to **commit** to key directory
- User can **monitor** their own key

Goals:

- I. Seamless user experience; operations occur in background
- 2. Users do not have to manage long-term secrets*
- 3. Efficient and easy to implement*; built on simple crypto primitives

• Key query responses come with a **proof** of correctness wrt commitment

Key Transparency Operation

Florida Institute for Cybersecurity (FICS) Research

Florida Institute for Cybersecurity (FICS) Research

Academia, Industry, and IETF

- CONIKS [MBBFF15]
- SEEMLess [CDGM19]
- Parakeet [MKSGOLL23]
- ELEKTRA [LCGJKM24]
- OPTIKS [LCGLM24]
- ...and more!

KEYTRANS working group

Current State of KT Formalization

Florida Institute for Cybersecurity (FICS) Research

KT as an ideal functionality

Functionality

Florida Institute for Cybersecurity (FICS) Research

Scheme

Protocol

KT Scheme Instantiation

aZKS

Florida Institute for Cybersecurity (FICS) Research

label = VRF(Alice|1) = 0111

Before we get to our protocol...

Florida Institute for Cybersecurity (FICS) Research

Scalability?

Distributed KT?

Infrastructure

Single writer, multiple readers

Florida Institute for Cybersecurity (FICS) Research

WhatsApp Infrastructure

Per-Epoch Summary

Florida Institute for Cybersecurity (FICS) Research

Per-Epoch Summary

Florida Institute for Cybersecurity (FICS) Research

Per-Epoch Summary

Florida Institute for Cybersecurity (FICS) Research

Our Protocol (Updates)

Florida Institute for Cybersecurity (FICS) Research

Our Protocol (Update Epoch)

Florida Institute for Cybersecurity (FICS) Research

Our Protocol (Querying)

Florida Institute for Cybersecurity (FICS) Research

Implementation and Experiments

- Build our protocol on top of Meta's AKD library •
 - Modularity of our solution
- Building the VBF is practically free
- Querying the VBF is at one order of magnitude or more faster than aZKS
- Verifying VBF responses is 5x faster than aZKS
- Very conservative speedup results
- 64% reduction in query computation time for large scale deployments

Storage Comparison

- WhatsApp: 150,000 updates per epoch, a few billion keys stored
- Per-epoch VBF with FPR = 1%
 - 180 KB ullet
- Compare with storing the entire aZKS state
 - SEEMLess: 27 TB
 - Parakeet is 2.2 TB

Compact, Private, and Verifiable Data Structures

Nicholas Brandt, Mia Filić, **Sam A. Markelon**, Thomas Shrimpton* (In Progress.Target:TBD '25/'26)

* Alphabetical Ordering Used

Florida Institute for Cybersecurity (FICS) Research

Generalize and Formalize the VBF

Florida Institute for Cybersecurity (FICS) Research

Formalize a QVDS

- Query Verifiable Data Structure
- QVDS $\pi = (GENKEY, REP, QRY, VFY)$
- Satisfy completeness and verifiability properties

Making PDS Verifiable

- Generic transformation for a large class of PDS
 - Preprocess the inputs with a VRF!
- Properties
 - Generic completeness •
 - Generic verifiability
 - Generic correctness ullet
 - Generic privacy

Outstanding Work

- Concrete instantiations
- Updates
- Fancy query types
- Applications

Florida Institute for Cybersecurity (FICS) Research

Timeline

Completed and Submitted

- Compact Frequency Estimators in Adversarial Environments (CCS '23)
- Probabilistic Data Structures in the Wild: A Security Analysis of Redis (Submitted to CODASPY '25)
- A Formal Treatment of Key Transparency Systems with Scalability Improvements (Submitted to S&P '25)

In Progress/Proposed

- Skipping Data Structures in Adversarial Environments (Target: CCS '25 in April 2025)
- Compact, Private, and Verifiable Data Structures (Target: TBD '25/'26 in Spring or Summer 2025)

• Thesis

- Writing: Spring and Summer 2025
- **Defense:** Early Fall 2025

Publications

Compact Frequency Estimators in Adversarial Environments

CCS '23

Skipping Data Structures in Adversarial Environments

In progress: CCS '25

Probabilistic Data Structures in the Wild: A Security Analysis of Redis

Submitted: CODASPY '25

Florida Institute for Cybersecurity (FICS) Research

A Formal Treatment of Key Transparency Systems with Scalability Improvements

Submitted: S&P '25

Compact, Private, and Verifiable Data Structures

In progress: TBD '25/'26

The DecCert PKI: A Solution to Decentralized Identity Attestation and Zooko's Triangle*

IEEE DAPPS '22

Leveraging Generative Models for Covert Messaging: Challenges and Tradeoffs for "Dead-Drop" Deployments

CODASPY '24

*Best paper award

Florida Institute for Cybersecurity (FICS) Research

Sam A. Markelon <u>smarkelon@ufl.edu</u>

