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ABSTRACT

Unlike purely classical communication, unconditionally secure key distribution is possible if Alice and Bob are
both equipped with quantum hardware. The degree to which a protocol needs to be quantum is not only an
interesting theoretical question, but also important for practical implementations. Indeed, one may wish to
construct cheaper devices, or compensate for device malfunction. In this sense, studying limited resource QKD
protocols is an important problem.

One direction to studying this is the semi-quantum model introduced by Boyer et al. in 2007 (PRL 99
140501). Several provably secure semi-quantum protocols were put forth. However, most of these protocols
were proven secure in the perfect qubit scenario and not necessarily against practical attacks. Only recently,
starting with seminal work of Boyer, Katz, Liss, and Mor in (PRA 96 062335) has research in the field of
semi-quantum cryptography considered practical devices and imperfections, such as multi photon sources and
imperfect detectors. In this work, we present a new SQKD protocol based on an Extended B92 protocol which
is able to counter certain practical attacks. Furthermore, the techniques we use may see broad application to
other limited-resource (S)QKD protocols.
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1. INTRODUCTION

A quantum key distribution (QKD) protocol allows two parties, Alice (A) and Bob (B), to establish a shared
secret key, secure against even all-powerful adversaries (referred to throughout as Eve (E)); see':? for a general
survey. This task is impossible using only classical communication. Thus, a natural question is “how quantum”
must a protocol be to gain this advantage over classical communication? To study this, Boyer et al., introduced
the notion of semi-quantum key distribution (SQKD) in.># In this model, one party, typically A, is “fully-
quantum” in that she can perform any operation on qubits necessary. The other party, B is “classical” in that
he can only interact with the quantum channel in a limited, classical manner.

In more detail, such protocols utilize a two-way quantum channel allowing quantum information to travel
from A to B, then back to A. The “classical” user B has two options when he receives a quantum state from A.
These are:

1. Measure and Resend: He subjects the incoming state to a computational Z basis measurement (|0), and
[1)), resending a computational basis state back to A.

2. Reflect: He reflects the state back to A undisturbed.

Notice that, essentially, classical B is restricted to either measuring and sending in a single, publicly known,
basis, or disconnecting from the quantum channel. If both parties were restricted in this manner, the resulting
protocol would be mathematically equivalent to a classical communication protocol. Rather interestingly, security
of these protocols is possible in the theoretical, perfect qubit, setting.® Recently, results have been extended to
practical scenarios, in particular with the seminal “Mirror protocol”.® For a general survey on semi-quantum
cryptography, the reader is referred to.”
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In this paper, we revisit a protocol we introduced in.® That SQKD protocol was designed to counter certain
practical multi-photon attacks. However, as it was a B92-inspired protocol,” it was also susceptible to the
Unambiguous State Discrimination (USD) attack.!?! Here, we extend this protocol to create a semi-quantum
version of the Extended-B92 protocol!? with an emphasis on practical device security. We show that the USD
attack on this protocol is less effective. We also perform a security analysis against a certain subset of collective
attacks, hinting at the protocol’s overall security. Though we leave a general proof of security (even against
arbitrary collective attacks) as future work.

2. THE PROTOCOL

The protocol we consider is an extension of one we introduced in.® Both protocols utilize certain “boxes,”
denoted By, for b € {0,1} which, abstractly have a quantum input and output along with a classical input and
output. This box, on receiving a quantum input p;, and a classical input ¢;,, € {0,1}, will behave as follows:

e If ¢;;, = 0, then the box will Reflect the input state, namely pout = pin. The classical output is simply
Cout = 0.

o If ¢;;, = 1, then the box performs a Measure and Resend type operation. With probability Pyo =
Pnc(pin), the box sets ¢y = 0 and outputs:

pout— Zq pm |b b|®n

n>0

Otherwise, with probability 1 — Py¢ the box sets ¢yt = 1 and outputs:

Zp (pin) |b) (B]%™ .

pout— 1_p C

The probability values q,(Lb) (pin) and p%b)(pm) depend on the input state and also the box’s construction. Our

security proof will be performed for any values of these probability values, however to actually evaluate our
resulting key-rate bound, we assume A and B are able to compute these values based on a given input state.
That is, we are not considering a device-independent box - these boxes must be fully characterized. Note also
that, even though our security analysis applies for any ¢, and p, that does not mean that any such values give
a secure protocol - indeed, for some boxes, it may be that the resulting key-rate bound is always 0. Note, when
clear, we will forgo writing the input state and simply write qu) instead of q( )(pm). We may also forgo writing
the superscript. Note that these boxes may be placed into the context of “mirror-like” devices used in SQKD

protocols.b

In our prior work,® we showed how such a box may be experimentally implemented using polarization en-
coding. Later, when evaluating, we will simulate such an implementation. Here, the c,,; value will be 1 if
the detector “clicks” (thus Py¢ is the probability of a No Click). This implies that, if we have a pure state
[y = Zie{o,l}" a; i) ® |e;), that is an adversarially prepared state consisting of n qubits entangled with Eve’s
ancilla, then, if ¢;,, = 1, the box transforms the state to:

Pout = 72 |0 ®N k®P Z ai|ei> )

k>O ww(i)=k

assuming the detector did not click where, above, we use ¢(j) to denote the probability of a detector clicking if
J photons hit it; P(z) = zz*; and w(i) is the Hamming weight of ¢, namely the number of non-zero bits of the
string 7. The above will be important for our simulations later, for more information see.?

In prior work, we utilized only a single box By creating a B92 style protocol. Here, we propose adding an
additional box B, implementing a semi-quantum version of the Extended B92 protocol.'? The protocol operates

as follows:



1. A emits a quantum state |[4+) = %HO} +11)).

2. B chooses a random b € {0, 1} specifying which box he is to use. Next, he chooses a random kg to be his
candidate key bit. He sets ¢;,, = kp for the corresponding box and observes the outcome Coy;.

3. A chooses a random basis Z (spanned by |0) and |1)) or X (spanned by |+) or |—)) and measures the
incoming signal in that basis.

4. B discloses which box he used (b) and the value of oyt If cour = 1, both users discard this iteration.

5. If A observes |—), she sets her key-bit to be 1. Otherwise, if she observes |1 — b), she sets her key-bit to be
0. For any other observation, she informs B to discard the iteration. Bob’s key-bit is kp.

That the protocol is correct is easy to see. Whenever B sets kg = 0, the corresponding box will Reflect and,
so, A will never observe |—) (assuming no noise of course). If B chooses kg = 1 and if ¢,y = 0, then the only
state leaving the box is of the form |b) (b| (possibly multiple copies) and, so, A can never observe |1 — b) (again,
assuming no noise). In the next section, we show security of the protocol against a certain class of collective
attacks (not all collective attacks, leaving that as future work) and analyze its performance against the USD
attack.

3. SECURITY ANALYSIS

In this section, we perform an information theoretic security analysis in the asymptotic scenario against certain

classes of collective attacks. To do so, we will utilize results in'®'* which showed that the key-rate r is:
UK
r— qim A5 > inf S(B|E), — H(B|A), (1)
K—oo K TAE

where the infimum is over all density operators o4, resulting from a collective attack that induce the observed
noise statistics. Above, we use S(B|E) to denote the conditional von Neumann entropy and H(B|A) the condi-
tional Shannon entropy. Finally, K is the size of the raw key before error correction and privacy amplification,
while ¢(K) is the size of the resulting secret key after these two processes are run.

Our first goal, therefore, is to derive a bound on S(B|E) given a particular opg. Initially, A is required to
send out a single state |+), however, due to device imperfections (e.g., her use of a weak coherent source), the
state she actually sends may be some arbitrary mixed state p4. However, since all parts of the protocol are public
knowledge, in particular, the exact details of her source preparation devices, F is, in the worst case, completely
aware of the state p4. Thus, we may assume, in the worst case, that E is the one who actually prepares the
signal sent to B. Furthermore, as in® we assume E sends an N-photon state, entangled with her ancilla (i.e., we
do not consider general collective attacks where the input state could be a mixture of photon numbers; we leave
that as future work and only consider a particular multi-photon input state). It is to E’s advantage that this is
a pure state. Thus, the state she prepares is:

B)= Y aildr®lé)g, (2)

i€{0,1}N

where the |é;) are arbitrary, normalized, states in E’s ancilla. Note, later, we will denote by ag to mean ayg...q
and o7 to mean ay...;. The N-qubit T register is sent to B’s lab. On return, E is allowed to probe the returning
signal. As in® we assume collective attacks and that E sends only a single, or no, photons to A. The action of
this unitary probe on certain, to be shown important, states we define as follows:

UIE) = [+, fo) + =, f1) + v, fo) (3)
U LY, e1v) =10, e0) + |1 1) + v, €0)
U ‘0N7é0N> = |0790> + |1vgl> + |Uag’lj> )



where |v) represents the vacuum state. The qubit register is sent to A while the remaining portion (the |f),
le), and |g) states) are kept by E. Unitarity imposes certain restrictions on these states that will be important
momentarily. Note that U’s action on other states that may be emitted by B’s lab will not be important for
our analysis (though, analyzing them in more detail may lead to more optimistic key-rate bounds - a subject of
interest for future work).

Since users are using either By or B; randomly and disclosing the result over a public channel (thus leaking
the information to F), we may take advantage of the concavity of von Neumann entropy to show:

1
S(B|E)O'Z S(B‘E)Uo‘FiS(BIE)UU

DN | =

where o; is the density operator resulting from the use of B;.

In our prior work,® we showed that for the above form of collective attack, given the resulting density operator
00, it holds that:

0 ~0 0
Po,o T 4ND1 1 Po,o
S(B|E)oy > | ————= | |h| 5——=—5— ] — (X0 4
(BIE)oy ( M )[ <p8,0+qzvp(1’,1> ( )1 @
where:
1 o — avif )2 +danRe? (GIR)
)\O =3 ]- + 0 ~0 (5)
2 Do,o T ANDT 1
(6)
and:
pg.o = Pr(Aobserves 1) | A=Z Acip, =0) (7)
;6(1)’1 = Pr (A observes |—) | A= X Ac¢iyn = 1A cour = 0A N photons leave his box) (8)

We further define the following probabilities:

p871 = Pr (Aobserves |-) | A=X Ac¢y, =0) 9)
Pl o= Pr(Aobserves 1) | A=Z Acip =1Acou =0) (10)
p%l = Pr (A observes |—) | A= X Acin =1Acour =0) (11)

(12)

allowing us to define the normalization term M as:

M=, (13)
4,3

The above probabilities are all conditioning also on B choosing By of course. Note that p8,0 is an observable
quantity. However ;5‘1’71 is not since B can never be sure when N photons leave his box. None the less, it may be
bounded by gnpi1,1 < p1,1, where p; ; is the actual observed value on average over all number of photons leaving
B’s lab. Similar bounds may be found, and will be used, for other unobservable quantities of this form.

The above )¢ expression depends on a quantity (G|Fp) where, based on the analysis in,® these are: |G) =
%(|QO> —|g1)) and |Fp) = %(|f0> —|f1)). Expanding the inner product yields:

(G1F0) = 5 ({golfo) — (aul ) — (onl o) + L ).



Note that, due to unitarity of U (see Equation 3), it holds that:

Qg =

\%(<90|f0> + (90l f1) + {91lfo) = {galf1)) + (ev|fo) - (14)

Solving for {go|fo) in the above yields:

(g0lfo) = V2(a0 = (90| £u)) = (90l.f1) = (91l fo) + (g1|f1) -
Finally, substituting into the equation for (G|Fp) yields the following:

\%(040 — (@l fo)) = (ol f2) — {arlfo) + (gl fr) (15)

Now, by the Cauchy-Schwarz inequality, we have: |(gy|fv)| < /{(gvlgv) (fo|fv). Clearly (fu|fv) = Pr(A =
vac | ¢;p =0) =1 —T, the probability of observing a vacuum in the event B choose to Reflect. Also, (g,|g,) is
the probability of observing a vacuum in the event N photons leave B’s lab and he choose Measure and Resend
(this is regardless of the value of cyy:). Consider:

(G|Fo) =

Pr(A=vac | cin=1Acour =0) = Z gnPr(A =vac | ¢in =1 A cour = 0 A n photons leave B’s lab).

The above, therefore, implies we may bound (g,|g,) < Pr(A = vac | cin = 1 A cour = 0)/qn = (1 — T?)/qn,
where we use T to mean the probability of photon transmittance in one direction. Similarly, we may bound
(ev]ey) needed later (except there we condition on the other box being used).

Let Q = pll’,0 and Qx = p871 (we assume a symmetry in E’s attack for b = 0,1 - if the attack is asymmetric,
users may abort, a common assumption in QKD security proofs). Note that pg 1 is measuring the X basis noise,
thus we use Qx to denote this probability. Then, by Cauchy-Schwarz, and using the same observation we used

to bound py,1, we have | (go|f1) | < Van(1 — Q)Qx, | {91lfo) | < VanQ(1 — Qx), and | (g1|f1) | < VanQQx-

Therefore, assuming «p is large enough (which may be enforced as we show later), we have:

Re (G|Fy) > \%(ao 1= T?/v/ax) — Van (1= 0)0x — Van Q{1 — Qx) — v/anQ0x. (16)

Due to symmetry of the system, we may use the same analysis to derive an equivalent lower bound on
S(B|E),, using, instead, probabilities p(l)’o and ﬁ%’h defined similarly but now conditioning on B using box Bj.

1 ~1 1
Po,o + aNPia P80
SBIE)oy 2 | =7 | |P| 77— = | —h(A 17
( ‘ ) 1 ( M > [ (ptl)70+qu%,1> ( 1)‘| ( )
where:
1 \/(Pé,o —qnpi)? +4qnRe? (E|FY)

A= |1+ < = (18)

2 Pho + aNDI 4

(19)

The resulting \; expression involves Re? (E|F;) where |E) = %(|eo> —le1)) and |Fy) = %(|f0> +|f1)). Similar
to above, we find:

%ml —{eulfu)) + (ol fo) + (eolf1) — {erl ). (20)

Assuming « is large enough (and this can be bounded as we show later), we have:

(B|F1) = —

|Re (E|F1) | > 7( ~1-T%/van) — Van(1 - Q)Qx — VanQ(1 — Qx) — VanQQx. (21)
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Figure 1. Key-rate of our protocol assuming ideal devices (namely ps. = 0 and n = 1) for various noise levels. We assume
@x = Q in this setting, though our key-rate bound allows for alternative scenarios. The length here is from A to B.

3.1 Evaluation

We assume a box implementation as in.® Let pg. be the dark count rate of the detector and n be its efficiency.
In this case, it was shown that:
P 1-— P
NC n < |Ozi|2 < NC (22)
n(1 = pac) n 1 — pdc
for i = 0,1 (again, taking ag to mean agy and a; to mean a;~ from Equation 2. (Of course, only one box was
shown in® thereby only bounding a; however the bound is symmetric and can be applied to a; also.)

We simulate the expected statistics of the protocol over fiber assuming E’s attack is symmetric (an enforceable

assumption). We use:
T — 10--15¢/10

where £ is the distance between A and B (i.e., we assume a fiber channel). In this case, we have:

b 1

Po,o = §T2(1 - Q) (23)
=570 Q) (24)
p8,1 = TQQ (25)
plo=T°Q (26)

From,® we have q?v = ap(1 — pge). Of course, only b = 0 was considered in our original work,® but the boxes
are symmetric and so this bound also applies to box b = 1. We assume Q@x = @ and pyc = .5. This allows
us to evaluate Equation 1 for various distances ¢ and noise scenarios . For ideal devices, namely n = 1 and
pae = 0, the resulting key-rate bound is shown in Figure 1. Non-ideal devices are shown in Figure 2. Note we
cannot compare maximal distance to our prior conference work as our original security analysis only considered
noiseless attacks.

4. UNAMBIGUOUS STATE DISCRIMINATION ATTACK

Our original work in® used only a single box and, similar to B92, was therefore susceptible to the unambiguous
state discrimination attack.'®!! Such an attack induces no noise, yet, depending on the loss in the channel, gives
Eve full information. We show, here, that our two-box protocol is better able to counter this attack (similar to
the fully-quantum Extended B92'2). This is where the second box becomes critical actually allowing users to
gain vital noise statistics that are unavailable with only one box.
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Figure 2. Key-rate of our protocol assuming non-ideal devices (namely ps. = 1075 and 7 varying as shown) for noiseless
channels (Q = 0).

Let’s decompose the initial state E sends (Equation 2) as:
[E) = ag 0N, é0) + ar [1V, é1) + B9)) ,

where (¢|¢)) = 1 and, so, |ag|? + |a1]? + |8 = 1. The USD attack induces no noise, therefore, Eve’s second
attack will take the form:

U |0N5 é0> = |0790> + |’U, gv>
UM, é) = |1,e1) + |v,e)
Uly) =10,z0) + |1, 21) + [v,20) -
Furthermore, with the USD attack, we may assume (go|go) = {(e1]e1) = T, the probability of photon transmittance
in one direction. Note that, if only one box is used, say By, then statistics on |eg) could not be gathered and, so,

Eve may set it to be a non-zero vector without inducing observable noise. This second box allows us to better
bound E’s attack and, as we show, rule out the USD attack at least for ideal devices.

By linearity, we have:

UIE) = 0) (a0 |90} + B lx0)) + 1) (e [er) + B |21)) + [v) [xo)
1 1
= —=|+) (o +ailer) +plxo) +0|21)) + —=|—)(a|go) — a1 |e1) + p(|zo) — |T + |v
\/§| ) (0 |90) + afer) + Blao) + B |21)) \/§| ) (@lgo) — axler) + B(|xo) — |21))) + [v) [x)
where |x,) is some state in E’s ancilla that is not relevant to our discussion.
Let |y) = |xo) — |z1) and |v) = ag|go) — a1 |g1). To induce no noise, from the above equation, it must be
that:
1 2 _ 1 2
0= Sllalgo) — a1 ler) + Bllzo) — lza)II” = 5l [v) + Bly) [I°-

Expanding the above and solving for Re (e1]go) yields:

T(L— )+ 8 (yly) + 26Re (oly) _ T(L— %) — 48 o
200 o 20001 ’

Re (e1]go) =

where, above, we used Cauchy-Schwarz along with the trivial bound that (v|v), (y|y) < 2. The above lower-bound
will be very important momentarily.

Now, let’s consider a single iteration of the protocol assuming a key-bit was distilled. We are interested in
the maximal information Eve can have on the key-bit given this attack. Note that, for our original protocol,®
assuming T was small enough, the above attack leaked full information even with perfect devices.



In the event B distills a key-bit of 0 (i.e., he reflected), the state of E’s ancilla will be:

po.= 5 10) (01 ® Plag lgo) +a lex) + B12))/2T + 3 [1) (1 ® Plao lgo) + aa ler) + B120)/2T  (28)

2

where |z) = |zg) + |z1) and we use the P register to denote the public information transmitted, namely which
box B used. On the other hand, if B distills a key-bit of 1, the state of E’s ancilla will be:

= 210} (01p ©190) {g0l /T + 5 11) (1 @ fer) (] /T (29)

Using a bound on the quantum Jensen-Shannon divergence,!®

between B and E, denoted I(B : E) is upper-bounded by:

we know that the quantum mutual information

1
I(B:FE)< 5”;00 — p1ll-

Let |¢) = %(ao lgo) + a1 |e1) + Bz)) then, taking advantage of basic properties of trace distance, we have:

1
I(B: E) < Z(|||¢>/\/T—|go>/ﬁ|l+|\|¢>/ﬁ ler) /VT|) < \/1—| (@lgo) [2/T% + /1 = [{dler) 2/ T?).
(30)
Expanding (¢|go) and using Equation 27 yields:
(@lan) = (0T + 0 (oler) + 5 (2lo)
> 5 (Tag = VT + aa[T(1 = ) — 45))
Similarly, we find: .
(pler) > \7(041T BVT + ag[T(1 - 8%) — 48)). (31)
As before, we may bound «; using:
Pye — 1-7 2 o Pyc
W—pa) 1 sl < 1 —pac’ (82)

which, with ideal devices, will be Py (and, again with ideal devices, Py¢ = 1/2). 8 may be determined since
|ao|? + |1 |* + |B]? = 1. Note, with only one box, only one of the «; values may be determined, even with ideal

settings. Combining with Equation 30 allows us to determine E’s maximal mutual information on B’s key bit
based on T" and f.

The first important observation is that, with ideal devices, the USD attack gives Eve no information regardless
of T. This is in stark contrast to our original protocol, using only one box, where Eve was able to get full
information once 71" was lower than a certain threshold even if ideal devices were used. For our two-box protocol,
the USD attack is ineffective with ideal devices. For non-ideal devices, however, Eve is able to get partial
information for various T' causing the key-rate to drop as shown in Figure 3.

5. CLOSING REMARKS

We introduced a new semi-quantum key distribution protocol inspired by the fully-quantum Extended B92
protocol.? This work extends our B92 style semi-quantum protocol in® to incorporate a second encoding
scheme allowing us to better counter the USD attack. Furthermore, we refined our security analysis method
to incorporate a larger class of attacks compared to our prior work in.® Though, we still leave an analysis of
all collective attacks as future work. Furthermore, finding a better security proof technique may lead to more
optimistic bounds on the performance of this protocol.
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Figure 3. Key-rate of our protocol (using our bound on I(B : E) along with the Devetak-Winter key-rate expression
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