
Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

(Full Version)∗

Luke A. Bauer
lukedrebauer@ufl.edu
University of Florida

Gainesville, FL, United States

James K. Howes IV
james.howes@ufl.edu
University of Florida

Gainesville, FL, United States

Sam A. Markelon
smarkelon@ufl.edu
University of Florida

Gainesville, FL, United States

Vincent Bindschaedler
vbindsch@cise.ufl.edu
University of Florida

Gainesville, FL, United States

Thomas Shrimpton
teshrim@ufl.edu

University of Florida
Gainesville, FL, United States

ABSTRACT
State of the art generative models of human-produced content are
the focus of many recent papers that explore their use for stegano-
graphic communication. In particular, generative models of natural
language text. Loosely, these works (invertibly) encode message-
carrying bits into a sequence of samples from the model, ultimately
yielding a plausible natural language covertext. By focusing on
this narrow steganographic piece, prior work has largely ignored
the significant algorithmic challenges, and performance-security
tradeoffs, that arise when one actually tries to build a messaging
pipeline around it. We make these challenges concrete, by consider-
ing the natural application of such a pipeline: namely, "dead-drop"
covert messaging over large, public internet platforms (e.g. social
media sites). We explicate the challenges and describe approaches
to overcome them, surfacing in the process important performance
and security tradeoffs that must be carefully tuned. We implement
a system around this model-based format-transforming encryption
pipeline, and give an empirical analysis of its performance and
(heuristic) security.

1 INTRODUCTION
The state of the art in generative models for natural language text
has advanced considerably in past few years, leading to applica-
tions across various domains. One such application, considered in a
number of recent papers, is using machine-learned generative mod-
els to create realistic covertexts, into which covert message data is
embedded (e.g.,[8, 10, 19, 22, 24, 32, 34, 43, 44]). Informally, the core
recipe for such language model steganography schemes is to view
the model as a collection of context-dependent distributions over
language tokens (e.g., individual letters, syllabic blocks, full words,
punctuation), and encode covert bits into a sequence of samples
from these distributions. To support the realism of the resulting
natural-language strings, the sequence of distributions is informed
by the history of what has been sampled. Sampling tokens is done
in an invertible way, i.e., the covert bits can be recovered from the
chosen covertext through an appropriate decoding process.

*This is the full version of the ACM CODASPY 2024 article with the same title and
authors. This version provides additional information about our proposed construction
and its empirical performance.

Producing a covertext in this way, compared to using encryption
or traditional steganography that embeds data into an existing
cover, ensures that the covertext lacks any obvious distortion, as it
appears to be natural text. And although the (cover)text is produced
by a language model — and these models are constantly being
improved — there is mounting evidence that the text they produce
is difficult to distinguish from human-written text [7, 30]. This
allows users to exchange covert messages in plain sight, such as
a social media platform, without the adversary being aware any
exchange is taking place. This may allow evading even the most
oppressive adversaries, for which the mere act of using encryption
may be enough to draw suspicion.

Research on such model-based steganography has thus far al-
most exclusively focused on optimizing the encoding and decoding
processes to maximize capacity and imperceptibility. Capacity, the
average number of covert bits that can be carried in a covertext
token, is a core operational metric that has direct bearing upon the
lengths of covertexts, the need for fragmentation, etc. Impercepti-
bility, the degree to which encoding bits distorts the distribution of
samples, has become the de facto “definition” of security. Intuitively,
if the distortion is large enough, one might distinguish between
covertexts that carry covert bits, and “covertexts” that result from
sampling with independent random bits. We argue that this is
an extremely narrow way to look at the security of model-based
steganography in deployment.

Despite the growing body of papers on model-based steganog-
raphy [8, 10, 19, 22, 24, 32, 34, 43, 44], there has yet to be a serious
exploration of applying these schemes to their natural use case:
covert messaging in dead-drop deployments. How should one turn
a core of model-based steganography into practically useful covert-
messaging channels? There has been no real effort to characterize
the challenges that arise when one attempts to do this, let alone
guidance on addressing these challenges.

Instead, the recent literature seems focused on delivering model-
based steganography with incremental improvements in impercep-
tibility and capacity.

In this paper, we focus onmodel-based covert messaging via large
Internet platforms that serve as dead-drops. Roughly speaking, we
consider a processing flow whereby Alice can (cryptographically)
turn a plaintext message into a natural-language covertext, and

ar
X

iv
:2

11
0.

07
00

9v
3

 [
cs

.C
R

]
 1

8
Ju

n
20

24

https://orcid.org/0000-0002-5740-4386
https://orcid.org/0009-0007-4476-8125
https://orcid.org/0009-0004-0968-6165
https://orcid.org/0000-0002-3066-7354
https://orcid.org/0000-0001-8131-5634

Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, and Thomas Shrimpton

then post this on a platform (e.g., X, Facebook, Github) for Bob to
later retrieve. The security intuition for this approach is clear. There
are many millions of posts each day to big social media platforms,
coming from nearly as many accounts; meanwhile, large language
models can generate posts that look like those created by human
platform users. If covert bits are carefully encoded into a model-
generated post, finding a covertext becomes a problem of finding a
needle in a stack of needles.

That said, realizing this compelling approach to covert messaging
is not straightforward. Even putting aside higher-level questions
about code distribution, key establishment, and management, etc.,
and focusing only on end-to-end processing of messages, there are
major challenges to address. We briefly highlight some of them.
Covertext discovery/recovery. User accounts/rendezvous lo-
cations cannot be agreed upon without creating a potential vul-
nerability that an adversary could exploit. Thus when Alice sends
messages to Bob, via one or more covertexts written to the dead-
drop platform, Bob faces the non-trivial task of determining which
of the millions of daily platform messages he should scrape and
process. Hence any usable system must support mechanisms for
this that are efficient for Bob, but not for the adversary.
Reliability in the face of ambiguity. Large social media plat-
forms are designed to provide reliable ingest and “delivery" of
posts, but end-to-end reliability means that receiver-side process-
ing should recover plaintexts from covertexts with probability as
close to one as possible. However, language model vocabularies
are not prefix-free; as a result, the natural-language strings they
generate are parsable in myriad ways, preventing reliable decoding.
Yet prior work on model-based steganography is silent on methods
for reliable recovery. Dealing with this parsing ambiguity — in a
way that is efficient, deployable, and secure — may be the most
significant challenge for model-based covert messaging.
Cross-device discrepancies. It is traditionally assumed that iden-
tical computations performed at the endpoints yield identical re-
sults. Unfortunately, this is not a safe assumption for model-based
steganography using large language models across different hard-
ware/software stacks.

Hardware non-determinism and device-specific idiosyncrasies
of floating point operations can cause model discrepancies [12].
Which results in Alice and Bob having different views of the same
model, preventing accurate bit recovery.
Platform idiosyncrasies. Another set of challenges elided in
the existing literature involve the specific restrictions that the in-
ternet platform enforces upon users’ posts. Each platform has its
own unique quirks, such as restrictions on the characters that may
appear in a post, limits on post length, syntactic embellishments
(e.g, hashtags) that support search and categorization of posts, etc.
Care must be taken to adhere to the restrictions, and to do so in a
manner that does not distinguish covertexts from “normal" post.
Our contributions. Any effort to realize the potential of model-
based steganography for dead-drop covert messaging will need
to address these matters (at least). Doing so requires decisions —
largely unacknowledged in priorwork— about balancing deployment-
dependent tradeoffs among efficiency, capacity, and security. This
work aims to surface and explore these challenges and tradeoffs, and
to ultimately make these systems practical to deploy. In particular:

• We initiate the study of challenges and tradeoffs of amodel-based
covert messaging system in a dead-drop deployment scenario.

• We propose and evaluate different ways to achieve reliability
in message delivery despite parsing ambiguity, cross-device dis-
crepancies, and platform idiosyncrasies.

• We propose and evaluate the use of both covert and overt hints to
facilitate efficient message discovery and recovery by recipients.

• We describe a security criterion, called plausibility, overlooked
by prior work. We also show that systems that fail to ensure
plausibility are easily broken by novel trial-decoding attacks.

• We discuss and evaluate security beyond imperceptibility (the
sole focus of most prior work).

2 BACKGROUND AND OVERVIEW
2.1 Model-Based Covert Messaging
A model-based steganography scheme consists of a generative
model (in our case a language model) and matching encoding and
decoding procedures. Roughly speaking, the encoding process takes
a bitstring as input and samples from the generative model deter-
ministically based on the input bits. The samples from the models
are then concatenated into a covertext. The decoding process takes
this covertext as input and uses the generative model’s distribu-
tion over samples to infer what bits must have been embedded to
produce each sample, thereby reconstituting the bitstring.

Language models and sampling. In this paper, we use GPT-
2 as language model since it is easily accessible and used almost
exclusively in prior works (e.g.,[5, 8, 19, 34, 42, 44]). However, our
observations and discussion apply equally to any other language
model, provided that the model is auto-regressive, meaning that
it characterizes a distribution over sequences of tokens according
to the chain rule of probability. GPT-2 like other language models
uses a finite vocabulary of tokens derived using byte-pair encoding
(BPE) [11, 33]. This vocabulary is not prefix-free, which as we will
describe later results in several system challenges.

Given a context prompt or seed, a language model such as GPT-2
produces a set of logit scores over the next possible tokens. Before
we can sample from the model, the logits are transformed into
a normalized probability distribution using the softmax function
based on a temperature hyperparameter 𝑡 > 0. If 𝑧𝑖 is the score of
the 𝑖th token, then the probability of choosing this token is pro-
portional to exp(𝑧𝑖/𝑡), meaning that low temperature results in a
highly peaked distribution, where the largest logit has nearly all of
the probability mass. High temperatures (e.g., 10) result in nearly
uniform distributions over the entire token set. Additionally, some
common sampling strategies restrict the set of tokens before trans-
formation. For example, top-𝑘 sampling ensures only the 𝑘 most
likely tokens are included, whereas top-𝑝 sampling adds tokens, in
decreasing order of probability, to the sampling distribution until a
total probability mass of 𝑝 has been reached.

Encoding and decoding. There are several strategies to em-
bed bits into model samples during the encoding process. Exist-
ing schemes used a variety of strategies including Huffman cod-
ing [8, 37], bins or grouping [36, 43], search trees [5, 42], and arith-
metic encoding [19, 34, 44]. Each technique results in slightly dif-
ferent embedding capacity and some techniques distort the model’s

Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

Table 1: Summary of security heuristics applied in prior work. ✔ indicates the evaluation was conducted whereas ✘ indicate that the paper did
not mention it or did not evaluate it.

This Work
Ziegler et al.

[44]
Dai and Cai

[8]
Yu et al.
[42]

Shen et al.
[34]

Kaptchuk et al.
[19]

Zhang et al.
[43]

Yang et al.
[37]

Cao et al.
[5]

Yang et al.
[36]

de Witt et al.
[9]

Ding et al.
[10]

Imperceptibility ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

ML Steganalysis ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘

Human Evaluation ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Decoding Attacks ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Model Evaluation ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Identifying Users ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Identifying Msgs ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

natural distribution by sampling only approximately from the token
distribution. As a result, a significant focus in prior work is optimiz-
ing the encoding process to minimize the distortion. Further, it is
argued that higher distortion provides advantages to an adversary
and therefore schemes should strive for imperceptibility, usually
measured as the KL-divergence between the effective encoding
distribution and the model’s natural token distribution.

The decoding process that the receiver must use to recover em-
bedded bits from the chosen covertext token sequence relies on the
token distribution probabilities to infer what bits were embedded in
each token choice. However, from the covertext there is no way for
the receiver to know for sure what tokens were specifically chosen
during encoding, since the model’s vocabulary is not prefix-free.
Prior works largely ignore this issue and in implementation sim-
ply follow the tokenizer’s deterministic and greedy token choices,
which result in unrecoverable bits for the receiver when different
token choices were made during encoding. We discuss later how to
overcome this issue. In our case we use arithmetic coding [16, 31]
as the basis of our encoding and decoding processes.

Cryptographic processing. A covert messaging system needs
to provide confidentality, authentication, and integrity through
cryptographic means. Most prior works do not describe any specific
cryptographic process alongside with the encoding and decoding
process, although some appear to assume that the bitstream fed
to the encoder [5, 8, 37, 42] is encrypted or uniformly randomly
distributed [34, 43, 44].

In our case, we use a carefully-designed cryptographic record
layer to encapsulate plaintexts. For this we use an Authenticated
Encryption with Associated Data (AEAD) construction realized in
practice using a block-cipher in CTR-mode and we explain how this
construction enables fragmentation of plaintext, which is necessary
due to platform restrictions on covertext length.

Record construction. We add several features to the record layer
that allows us to address challenges later. We first prepare the
plaintext 𝑀 by (1) prepending its byte length as a 1-byte integer,
and (2) inserting a distinguished checkpoint byte after each 𝑥 bytes
(in our implementation 𝑥 = 10). Both of these features are used to
ensure reliable and efficient parsing as well as correct recognition
of authenticated messages (as discussed in Section 4). Call this
augmented plaintext𝑀′.

For the cryptographic operations we derive three keys 𝐾1, 𝐾2, 𝐾3
from the shared secret, and require a synchronized message counter
(𝐼𝑉) as well as a freely chosen covertext tweak (𝐼𝑋) which allows
us to retry covertexts. We encrypt 𝑀′ using AES in CTR-mode

with IV and 𝐾3 to obtain ciphertext 𝐶 . We also generate a sentinel
value (SV) by computing HMAC-SHA512𝐾1 (“SV” | | IV | | IX) and
truncating the result to a two-byte value 𝑉 . The sentinel value is
our covert hint which we use to facilitate the retrieval of covert
messages from the platform for the receiver as described in Sec-
tion 5. Finally, we generate the authentication tag 𝑇 by comput-
ing HMAC-SHA512𝐾2 (“Tag” | |𝑉 | |𝐶) and truncating the result to
five bytes. The ciphertext record is the string 𝑉 | |𝐶 | |𝑇 . Again, the
choices of two bytes for the SV, one byte for the plaintext length,
and five bytes for the tag are to balance security and efficiency, and
are adjustable. Note in cases where fragmentation is needed, we
include a fragment index at the end of the plaintext chunk instead
of the full 𝑇 , as described in Section 3.

As mentioned above, we add a message tweak (IX) to the con-
struction of the SV. This is a small value, e.g. 0 ≤ IX ≤ 5, that allows
the user to generate multiple distinct covertexts for the same plain-
text. We find this is useful for cases where the encoding method
chooses an especially strange covertext, or if the user chooses to
simply retry messages instead of preventing errors. Since the space
of values is kept small, the receiver can just precompute all ex-
pected sentinel values and very quickly screen incoming message
by checking for these values.

Rendezvous. For the sender and receiver to properly communi-
cate they must pre-share certain necessary information. In previous
work, this is rarely mentioned, with only a few papers[19, 42] stat-
ing they exchange model states, so that they are observing identical
prediction distributions. We assume our users exchange this along
with an overt signal as described in Section 5. While this informa-
tion could be exchanged on a per-message basis, we assume a key
table protocol. In which, after a one time exchange of a key, and by
maintaining a message counter, both the sender and receiver could
use a PRNG to select from an identical table of model states. The
model state is made up of information such as finetuning, sampling
parameters (top-k/top-p, temperature), and an initial seed, anything
necessary to synchronize model output. It is important to keep sets
of this information because they combine to help the model gener-
ate text that looks natural within the context, while also helping the
sender and receiver coordinate the exchange location. For instance,
such a table would allow the sender and receiver to input a key
and message counter, and receive an entry telling them that the
current message they are exchanging, would be on the news tag,
use a seed of “In Today’s” News and be generated with a gpt-2
model finteunted on #NEWS posts. If they are varied it could also
contain sampling parameters such as temperature, and top-k/top-p.

Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, and Thomas Shrimpton

Here it is worth pointing out Collage [2], an end-to-end covert
messaging system that utilizes dead-drop platforms that host user-
generated content. Collage organizes a covert messaging system
into logical layers that resemble the layers in a traditional proto-
col stack. It also discusses the rendezvous problem (and possible
approaches) extensively.

Anote about key exchange. Any record module implementation
is going to require a shared key. To minimize key exchange require-
ments, in practice it is convenient to derive the record module key
from a long-term shared key which is established before communi-
cation begins. How this key exchange occurs is not considered here,
but we know of at least one approach (MoneyMorph [26]) which
may enable key exchange without requiring a secure out-of-band
connection. More generally, steganographic key exchange is a long-
standing problem in the field which we do not attempt to solve; the
reader may refer to Ker et al. [21] for a more thorough discussion.

2.2 MBFTE
In the rest of the paper, we systematically discuss various chal-
lenges that arise when designing a system around a model-based
steganographic scheme. These challenges are not just engineering
problems. They require systematic thinking about how to design a
system around the steganographic core and navigating the trade-
offs between system performance and security that emerge from
various design choices.

To help us discuss these challenges and evaluate proposed so-
lutions, we implement a potential system called MBFTE (model-
based format-transforming encryption).We stress that MBFTE is
not presented as a concrete deployable system nor the only pos-
sible solution to covert messaging, but as a tool we use to discuss
and analyze performance and security tradeoffs. We show the per-
formance (capacity, encoding/decoding time, etc.) of our scheme
in Section 7.

Here, we provide a technical definition of model-based FTE, the
core of our covert messaging system, and then detail a particular
construction of an MBFTE scheme. First, let us establish some
notation that will be used throughout the remainder of the paper.

Notational preliminaries. When 𝑋,𝑛 are integers, we write
⟨𝑋 ⟩𝑛 to denote the 𝑛-bit string that encodes 𝑋 . When 𝑎, 𝑏, 𝑐 are
integers, we write V𝑎W𝑏𝑐 and T𝑎U𝑏𝑐 as shorthand for (𝑎 · 2𝑐) % 2𝑏

and ⌊(𝑎 % 2𝑏) · 2−𝑐 ⌋, respectively (we call them bounded bit shifts).
When 𝑋,𝑌 are strings, we write 𝑋 | |𝑌 for their concatenation and
|𝑋 |, |𝑌 | for their lengths. We write 𝑋 [𝑖] for the 𝑖th symbol in 𝑋 ,
𝑌 [−𝑖] for the 𝑖th-to-last symbol in 𝑌 , and 𝑋 [: 𝑖] for the string
consisting of the first 𝑖 symbols in 𝑋 .

We use standard pseudocode to describe algorithms, with a few
expressive embellishments: When ★ is a binary operator, the state-
ment 𝑎 ←★ 𝑏 is equivalent to 𝑎 ← 𝑎 ★ 𝑏. We use the statement
𝑎 ←𝜆𝑥 . Φ in a similar manner, evaluating expression Φ with 𝑎 in
place of each 𝑥 , and assigning the result to 𝑎. If multiple comma-
separated variables appear on the left side of such an assignment,
then the operation is applied to each in turn. The expression $(𝑛)
uniformly samples an integer between 0 and 𝑛 − 1.

Model-based formats and FTE schemes. A model-based format
is a tupleℳ = (Σ,𝒮,ℱ ,Next, 𝑠0) where Σ is a set of tokens, 𝒮 is a

set ofmodel seeds,ℱ = {𝑓𝑠 }𝑠∈𝒮 is an ensemble of distributions over
values in Σ, Next : 𝒮 × Σ → 𝒮 defines a seed transition function,
and 𝑠0 ∈ 𝒮 is the initial seed. A model-based FTE scheme (MBFTE)
is a pair of algorithms (Enc,Dec) with the following specification:

• The deterministic encryption algorithm (Enc) takes as inputs
a key 𝐾 , an initial value 𝑁 , a model-based format ℳ, and a
plaintext string 𝑀 ; it outputs a ciphertext string 𝑋 ∈ Σ∗. We
write 𝑋 ← Enc𝑁,ℳ

𝐾
(𝑀).

• The deterministic decryption algorithm (Dec) takes as inputs a
key𝐾 , an initial value 𝑁 , a model-based formatℳ, and a cipher-
text string 𝑋 ; it outputs a plaintext string𝑀 or the distinguished
error symbol ⊥. We write𝑀 ← Dec𝑁,ℳ

𝐾
(𝑋).

An MBFTE scheme is 𝛿-correct if for all 𝑁,ℳ, and 𝑀 we have
Pr[Dec𝑁,ℳ

𝐾
(Enc𝑁,ℳ

𝐾
(𝑀)) = 𝑀] ≥ 𝛿 with probability taken over

the choice of 𝐾 ; for sufficiently small values of 𝛿 we may simply
refer to the scheme as correct. These two definitions support format-
ted encryption schemes for a particular class of generative model;
specifically, those which can deterministically produce a family of
arbitrarily long distribution sequences from a starting seed.

Sampling as source decoding. To transform a plaintext string
into a formatted ciphertext, we utilize the same technique as pre-
vious work on model-based steganography: encrypt the string,
interpret this ciphertext as a source code for the distribution pro-
vided by the model, and “decompress" it using standard source-
coding algorithms. This procedure is more nuanced than it may
appear because source-coding algorithms are designed in the for-
ward direction—given an input string, an optimal encoding for that
string will uniquely decode to the same string—but model-based
FTE applies these algorithms in the reverse order.

The key challenge is that the ciphertext may not line up with any
particular discrete source code implied by the model distribution(s),
resulting in ambiguity at the end of the coding process. We pad the
ciphertext with extra bits to deal with this.

MBFTE using arithmetic coding. The system is parameterized
by a symbol length 𝑟 , which denotes the bit length of each symbol
(e.g. 𝑟 = 8 for byte strings) and coding length ℓ which determines
the size of the coding range in symbols. The precision of the coding
state is therefore fixed at 𝑟 · ℓ .

The core of both encoding and decoding is a loop which (1)
adjusts the coding range based on the current token, (2) rescales the
coding range to shift out determined symbols, and (3) updates the
model seed. When rescaling, the range may need to be "inverted"
if it straddles a symbol boundary; 𝑤 keeps a count of symbols
that were output in an inverted state, and lines 24–25 adjust these
symbols when the inversion is resolved.

During decoding the next token is selected from the model dis-
tribution according to the ciphertext bits that are in the coding
window (represented by 𝑐). As symbols are shifted out and ap-
pended to 𝐷 , the remaining ciphertext symbols are shifted into
the coding window one by one. Once the end of the ciphertext is
reached, random padding bits are used to maintain uniform sam-
pling of tokens. The loop terminates once the full length of the
ciphertext has been shifted out, at which point 𝐷 should be equal
to 𝐶 , or at least within a small margin of error depending on the

Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

value of𝑤 and how many padding bits (if any) were shifted out on
the final token.

Encoding proceeds in a similar manner, except that the sequence
of tokens is provided as input rather than sampled from the model.
This parallel operation ensures that, as long as the model ℳ is
identical, the value of 𝐷 returned by the encoder will be the same
value produced by the decoder. We must also return𝑤 because the
trailing 𝑤 symbols will have two alternatives depending on how
the inversion could resolve, so both must be considered.

Constructing an MBFTE scheme is now a straightforward com-
position of the arithmetic coding algorithms with a deterministic
AE scheme Π = (ℰ,𝒟) (with keys 𝐾 ∈ 𝒦 and IVs 𝑁 ∈ 𝒩) as
follows:
• Enc𝑁,ℳ

𝐾
(𝑀): Output the value returned byDecode(ℰ𝑁

𝐾
(𝑀),ℳ).

• Dec𝑁,ℳ
𝐾

(𝑋): Compute 𝐶,𝑤 ← Encode(𝑋,ℳ). Then,
(1) Compute𝑀 ← 𝒟𝑁

𝐾
(𝐶). If𝑀 ≠⊥, output𝑀 and halt.

(2) If 𝑤 > 0 then let 𝐶′ ← 𝐶 and compute 𝐶′ [−𝑤] ←+ 1. If
𝑤 > 1, invert the bits in the last𝑤−1 symbols of𝐶′. Compute
𝑀 ← 𝒟𝑁

𝐾
(𝐶′). If𝑀 ≠⊥, output𝑀 and halt.

(3) Subtract 1 from𝑤 , truncate the last symbol from𝐶 and return
to (1), unless ℓ − 1 symbols have already been truncated, in
which case output ⊥ and halt.

In general, the worst-case number of trial decryptions required0
is 2ℓ . But by ensuring that the message length |𝑀 | is encoded into
every encrypted plaintext, as we will do, trial decryption can be
avoided altogether.

2.3 Threat Model & Security
Threat model. The adversary observes posts on the platform,
with the goal of identifying those posts that contain covert mes-
sages and (or) identifying users of the covert messaging system. We
assume the adversary could potentially know every aspect of the
system, except the secret key associated with any pair of commu-
nicating users. For example, the adversary may have knowledge
of the cryptographic scheme used, generative model weights and
sampling techniques.

The adversary may even have access to the system directly,
meaning they can act like a user to post messages or attempt to
retrieve/decode covert messages from platform posts.

However, the adversary is not in control of the platform, meaning
they cannot prevent posting on the platform or modify existing
posts. They also cannot directly see fine-grained actions by users on
the platform or directly obtain identifiers (e.g., IP addresses) of those
users posting or scraping the platform. Similarly, we assume that
banning usage of the platform or taking it down is considered too
costly in terms of collateral damage. Finally, the covert messaging
system is intended for use on a platform with a significant daily
volume of posts (e.g., hundreds of millions per day), so any detection
method must scale to be a viable strategy (e.g., human detection
would not scale).

Althoughwe do not directly consider it in this paper, it is possible
that the platform would cooperate with the adversary. In this case
posts could be altered, and the adversary couldmore closelymonitor
user activities. Our record layer and sending redundant messages
0With suitable values of 𝑟 and ℓ this number can be minimized in practice during
honest operation

could largely mitigate the effect of the first issue, however the
second would require more precaution on the user’s side to hide
their anomalous actions. We leave this scenario to future work.

Note: our threat model is more comprehensive than that consid-
ered by most prior work, which (implicitly) considers an adversary
focused on detecting covertext from other text output from the
model. Their assumed adversary does not have full knowledge
of the system (except the key), access to the system, or the capa-
bility to identify covertext by distinguishing it from normal (i.e.,
human-written) platform posts.
A note on formal notions. While there are security notions for
steganography that may apply to our considered setting [3, 4, 14, 15,
17, 20, 27, 45] operationalizing them is challenging. For example,
the Hopper et al. notion [15] requires that the scheme’s output
be indistinguishable from that of an oracle for the “true” channel.
The problem is then justifying the choice of the true channel with
respect to real-world deployment of the system. One could of course
simply assert that the true channel is the underlying languagemodel
(essentially defining the problem away as some prior work does)
and then prove indistinguishability with respect to that. But this
would be vacuous for many deployment scenarios.
Security considerations in prior works. Prior work focuses
security analysis on imperceptibility. But it is not obvious how
imperceptibility relates to security in the deployment scenario we
consider — dead-drop communication over large Internet platforms
— where covert messages are hidden among a sea of “normal” plat-
form posts. Identifying posts containing covert message requires
distinguishing between the distribution of covertext posts and regu-
lar platform posts, which is ameasure of naturalness of the covertext.
By contrast, imperceptibility measures only distortion introduced by
embedding covert bits. Another issue with imperceptibility is that
measuring it requires using the model’s text distribution without
embedding covert bits as a reference. But in our considered deploy-
ment scenario, hardware and software heterogeneity of devices
means there is no single “reference” distribution, so imperceptibil-
ity measured by Alice may be different than measured by Bob.
Security beyond imperceptibility. So if imperceptibility is inad-
equate to measure security what else should be used? As mentioned
this space lacks a proper security definition against which we could
evaluate the system as a whole. Nevertheless we can empirically
measure detectability of covertexts by evaluating naturalness using
a set of machine learning-based distinguishers. We explain how
to do this in the paper and evaluate the success rate of various
approaches representing different scenarios. It is critical to observe,
however, that detectability measured this way reflects the ability
of the underlying language model to generate text that matches
content on the platform. Newer and more complex language models
are more capable than older simpler models, but since almost all
prior work uses GPT-2, we also use it.

Finally, there is another aspect of security that was overlooked in
prior work: plausibility. The model-based covert messaging system
must be able to produce the text of every post on the platform. Oth-
erwise an adversary can attempt a “trial-decoding” attack on any
platform post and if the trial decoding fails conclude that the post
is not a covertext. In fact, to ensure plausibility the system must be
such that a trial-decoding attack on any post (whether it contains

Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, and Thomas Shrimpton

covertext or not) must result in a bitstring indistinguishable from
ciphertext bits for any adversary without knowledge of the secret
key. Surprisingly, plausibility is easily violated by certain seemingly
unrelated design choices (e.g., to handle or ignore parsing ambigu-
ity) or by using best practices for model sampling methodologies.
Numerous prior work’s model-based covert messaging schemes
violate plausibility and are swiftly broken by one or more variants
of the trial-decoding attack. Ironically some of the advice from
prior work on how to improve imperceptibility makes schemes
more vulnerable to these attacks, not less.

3 HANDLING PLATFORM IDIOSYNCRACIES
Each platform has its own unique quirks such as restrictions of
tokens it will accept in a post, length limits of posts, and catego-
rization strategy used to organize the posts (e.g., threads, hashtags,
etc). Thus any system that uses such platform for covert messaging
must contend with these quirks.

3.1 Length Limits
Many platforms have a limit on the length of each post so that
only messages of 𝐿 characters or less are supported. This means
that if our input plaintext𝑀 is too long, it needs to be fragmented
across multiple covertexts. This is more difficult than it might seem
because we do not know a priori how to fragment. In particular,
we do not know ahead of time how many characters will appear in
each model sample, until we actually do the sampling. Hence, we
do not know how many plaintext bits we can encode into model
samples before hitting the covertext-length limit.

For a system construction similar to ours, there are two obvious
methods of splitting the message up and sending it across multiple
separate platform posts. The first is the simplest, and consists of
splitting the plaintext into chunks of a short enough length that
one could reasonably assume each chunk will be encoded within
the length limit. For instance, MBFTE has a expansion factor of 11.5,
with a standard deviation of 2.86 as described in Table 2. So for a
length limit of 500 bytes (the X character limit), one could assume
with significant probability (i.e., 84%) that a message of 34 bytes
will successfully fit on the platform. The downside to this method
is that each message chunk would require its own complete record
layer, and the sender would need to reject and regenerate covertexts
that end up too long. We achieve this by inserting a message tweak
in the sentinel value, as described in Section 2.

Our preferred alternative solution is to use our CTR-mode en-
cryption to “pretend” as if we do know where the fragmentation
boundaries are. We can do this because CTR mode allows us to
encrypt the plaintext one bit at a time, in an online fashion. Thus we
can pause encoding of the input when our covertext has neared the
covertext-length limit, insert control information (e.g., the fragment
index, number of trailing padding bits in the previous fragment)
into the plaintext, send the current covertext, and continue on by
generating text for the rest of the message.

Note that when this fragmentation method is employed, one may
want to append a sentinel value to each fragment; in particular,
when each fragment will result in a distinct platform post. The
effective ciphertext record (which is encoded into model samples)
would then be 𝑉1 | |𝐶1 | |𝑉2 | |𝐶2 | | · · · | |𝑉ℓ | |𝐶ℓ | |𝑇 , where each 𝐶𝑖

is the CTR-mode encryption of a plaintext fragment, each 𝑉𝑖 is a
sentinel value, and where the tag𝑇 covers everything that precedes
it. Including an SV for each fragment does come at a capacity cost
that grows linearly in the number of fragments. However it ensures
we embed the maximum number of bits in each message, and never
need to regenerate covertexts.

We assume a lossless platform however if there were concerns
about losing message fragments, giving each fragment its own
record layer and sending redundant copies could improve reliability
at the cost of efficiency. Regardless of the chosen method, care
should be taken to avoid creating so many fragments that the sender
is forced to post a conspicuous number of covertexts to the platform.

3.2 Token Restrictions
Some platforms have token restrictions in the sense that specific
characters interact with the platform itself (e.g., # and @ being used
to indicate tags and users respectively). A related issue is that some
special language model tokens such as “|endoftext|” would look out
of place as part of a platform post and may act as instant identifiers
of covertext.

If we allow the model to generate such tokens in covertext, the
result may be changing the (logical) location of the post or the
covertext may be rejected by the platform itself. To account for
this, we propose to force the probability of sampling such tokens
to 0, effectively preventing them from being produced. Technically,
doing so alters the output distribution of the model. However, if
the platform itself cannot accept such tokens, or if including them
would change how the platform views the post, such tokens would
never appear on the platform in the first place. Changing the proba-
bilities for this small set of tokens is trivial and does not measurably
alter encode/decode time or capacity.

Alternatively, the sender could reject and retry any covertexts
that generates a forbidden token, however this has the similar effect
of altering the base model distribution, and could delay sender-
side processing by potentially forcing many retries messages. The
amount of retries necessary depends highly on the finetuning and
seed being used to generate the covertext, both of which affect the
likelihood of a forbidden token being chosen.

Stepping back, this example highlights the problem with consid-
ering security of the steganographic core of the system to the exclu-
sion of the rest. Altering the “natural” output distribution of the lan-
guage model as we advocate here goes against the imperceptibility-
maximizing thinking of prior work (see Section 8.1) — which pro-
poses increasingly complex embedding schemes to minimize the
distance between the language model’s natural distribution and
that of the produced covertext. But here the distortion introduced
actually increases covertness because it removes obvious signs that
would otherwise appear on the platform only in covertext posts.

4 HANDLING AMBIGUOUS PARSING
For a model-based covert messaging system to work reliably, the
token distributions produced at the sender and receiver at each step
of encoding/decoding must match exactly. For language models
such as GPT-2, this will be the case provided that the receiver’s
parsing of a covertext into tokens matches the way the covertext
was produced by the sender. Interestingly prior works (e.g., [8,

Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

34, 44]) overlooked this issue, opting the GPT-2’s tokenizer as a
heuristic for parsing. Although this works in the majority of cases,
it fails often enough that receivers cannot retrieve up to 12.5% of
messages intended for them.

4.1 Nonprefix-free Vocabulary
The difficulty is that parsing a covertext from the receiver’s point of
view is inherently ambiguous because GPT-2’s vocabulary (like that
of many other language models) is not prefix-free due to the use of
byte-pair encoding (BPE) [11, 33]. Therefore for some covertexts
there are multiple distinct ways to parse it into tokens.

To illustrate this consider the following example. Suppose the
first word of the covertext is “These”, and the tokens ‘T ’, ‘Th’, ‘The’,
‘These’ all appear in the support of the initial token distribution.
From the standpoint of the receiver, the word “These” could have
been sampled (by the sender) as a single token ‘These’ or the se-
quence of tokens ‘The’, ‘s’, ‘e’, or any other valid parsing of this word
into vocabulary tokens. Until the receiver commits to a parsing
path, decodes the entire covertext, and checks the authentication
tag, there is no way to determine which of these choices was made
by the sender.

Surprisingly none of the prior work on text steganography with
GPT-2 mentions this issue. Prior work (e.g., [8, 19, 34, 44]) leans
upon the model’s native tokenizer — a function packaged with GPT-
2 which converts natural language into a list of GPT-2 tokens — to
propose a token path through the covertext. For any given string
the tokenizer returns a parsing of it into a sequence of tokens. This
method has the advantage of being fast and simple to use since the
receiver can run the tokenizer on the covertext and then determine
the probability distributions at each step of the proposed path.

However, by generating sets of 1000 covertexts using combina-
tions of parameters described in 7 and attempting to only decode
them using the tokenizer path, we find that for between 3% and
12.5% of covertexts generated with GPT-2 the proposed tokenizer
path is not the same as the path chosen by the sender. This rate
varies based on the length of the seed, the length of the message, the
model fine-tuning, and sampling hyperparameters such as a high
top-𝑘 or temperature. In deployment, this would be unacceptable
as it would mean that up to 12.5% of the messages that Alice sends
cannot be recovered by Bob.

4.2 Balancing Reliability, Capacity, and
Receiver-Side Efficiency

The common approach is to have the receiver decode each covertext
using only the tokenizer path. As previouslymentioned, this will fail
whenever the sender’s sampled tokens do not match the tokenizer
path, which means that some valid covertexts cannot be recovered
by the receiver. To ensure reliable transmission between Alice and
Bob in this case would necessitate a retry mechanism where Alice
could regenerate covertexts until one is successfully decodable
using the tokenizer path and then send that one to Bob. This would
increase the computational burden on the sender, by forcing them to
redo the encoding process. For our sample experiments in Section 7,
this would increase encode time by approximately 11.5 seconds per
retry. Additionally, it potentially opens up an (admittedly difficult
to use) attack vector, because it shifts probability away from some

covertexts towards others. For example, if a message is unlikely to
be produced through the tokenizer path but nevertheless relatively
likely to be produced by the language model, then the adversary
can be highly confident that the message is not covertext.

Since this approach is not completely satisfactory in our view, we
propose another solution using checkpoint decoding. The solution
is motivated by the observation that when the tokenizer path is
not the correct one, the actual path is in most cases still relatively
similar to the tokenizer path. Concretely, the idea is to use the
tokenizer path as the base token path in combination with check-
points inserted in the ciphertext to verify that the current token
path is likely the correct one. When the current path is not correct
the receiver process backtracks to the most likely alternative and
attempts that path.

The sender inserts single zero-byte checkpoints, into the plain-
text record every 𝑥 bytes, where 𝑥 is a system parameter that tunes
the tradeoff between decoding effort and capacity. Every time a pre-
diction is requested from the model, there will be a token predicted
by the tokenizer path, and multiple alternative tokens that could
possibly match the covertext chunk being currently parsed. For
each of these alternative tokens we record the token, the location
in the text, the model context, the current number of backtracks,
and the probability compared against the tokenizer predicted token.
This record is added to a stack sorted by token probability when
compared against the tokenizer predicted token. For the first pass
through, we always choose the token selected by the tokenizer.
Then the chosen token is added to the list, and we decode as much
of the ciphertext as we can using the current token path.

Once we have enough of the ciphertext to check either the sen-
tinel value, one of the checkpoints, or the final MAC tag, we do
so. If the value is as expected, we lock in the current path, reduce
likelihood of alternative token choices currently on the stack, and
continue on the current tokenizer path.

If the checkpoint value does not match what is expected, we pop
themost likely alternative token off the stack and backtrack to it.We
set the current location and model context to the values associated
with that token. To determine what path to take going forward, we
run the tokenizer over the remaining covertext that has not been
processed in the current path, and set that as new tokenizer path.
We repeat this process, until we pass all the checkpoints and the
final MAC tag.

The downside of this approach is that the single byte checkpoints
inserted every 𝑥 bytes reduce embedding capacity. The advantage
is that this decoding strategy is more efficient in practice than
alternatives. This is because with overwhelming probability the
correct token sequence selected by the sender either matches the
tokenizer path or has few differences with it, meaning decoding
time is only increased by a small amount compared to the tokenizer
decoding described above. Further, because this strategy allows for
backtracking until the correct path is identified (no matter how far
from the tokenizer path it is), Bob always recovers the message
correctly (unlike techniques used in prior work).

5 IDENTIFYING AND RETRIEVING MESSAGES
Users cannot simply exchange usernames, since the adversary may
intercept it, so the receiver needs a way to identify which posts on

Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, and Thomas Shrimpton

Figure 1: Out of 100k posts scraped from Mastodon.social on Decem-
ber 26th, 2023, we show the 25 most used tags. For each tag, we show
average post length against number of posts containing it.

the platform contain covert messages intended for them, and do so
in a way that the adversary cannot take advantage of. To aid Bob in
receiving the intended message, we propose adding covert signals
and overt signals.

5.1 Overt Signaling
Overt signals are publicly visible, and do not depend on the crypto-
graphic operations that created the covertext. When possible, we
should choose overt signals that can be filtered via the platform
API (i.e., without needing to be scraped) such as hashtags on X or
Mastodon — this greatly reduces the number of messages that need
to have their covert signals checked. In our implementation, overt
signals are hashtags added to the end of the covertext.

Good overt signals must strike a balance between efficiency,
capacity, and undetectability, as they determine the amount of
content that the receiver must sift through, and may also reveal
the presence of covert messages to an adversary. A tag with too
many posts makes it difficult for the receiver to find, but too few
posts makes identifying covert messages trivial for an adversary
with knowledge of the tag. The average post length also dictates
how long covertexts can be without becoming trivial to detect.

In Figure 1 we show popular tags and their average post lengths.
We scrape 100k posts from Mastodon.social, and compare the av-
erage post length and the number of posts for each tag. Each tag
offers tradeoffs in detectability and capacity. The “press” tag has a
relatively high average post length and many posts to hide among,
however the high traffic may make retrieval difficult. A tag such
as “immersive_vr_experience”, not shown since it is rarely used,
averages posts of 490 chars, but only contains 2 posts, making de-
tection trivial. A tag such as ’usa’, has about 300 posts averaging
400 characters, and provides security as well as capacity.

5.2 Covert Signaling
Even with well-chosen overt signals, on a large platform, there
may be hundreds or thousands of posts to check. To avoid having
to fully process each candidate post to see if it indeed contains a
message intended for Bob, we add covert signals to each message.

Covert signals are not publicly visible and are part of the cryp-
tographic operations that form the bitstream. Our covert signal is
a sentinel value (SV) added to the front of the ciphertext record
during its construction. This value is a 2-byte HMAC of the message
counter and a message tweak made using the shared keys. The ad-
dition of the SV means that during decoding we only need to parse
enough tokens to unambiguously determine the first two bytes
rather than the entire (potential) covertext. We can then recompute
the expected SV and if it matches the recovered two bytes, then the
receiver knows that it is likely processing an MBFTE message.

To evaluate the benefit of this approach, we experimentally mea-
sure the time for the receiver to decode and check the sentinel
values of a collection of 100 messages (99 real Mastodon posts, 1
MBFTE message) when the collection is in random order. Over 50
trials, this process took 57.9 seconds (±3.27 seconds). This result
shows that the receiver can periodically poll the platform in order
to retrieve new MBFTE messages. Given that Mastodon, Twitter,
and Reddit provide functionality for chronologically viewing posts,
as well as selecting subsets through hashtags or subreddits, it is not
difficult to check all messages in a given time period and semantic
signal. Without using covert signaling (i.e. attempting to fully de-
code every message) the same process takes at least 19.3 minutes,
complicated massively by the fact that checkpointing would fail on
all non-MBFTE messages. If the recipient does not know if a mes-
sage is intended for them, reliable decoding fails since the receiver
cannot tell if they are on the wrong path, or the wrong message.

6 HANDLING CROSS-DEVICE
DISCREPANCIES

A well-known challenge in machine learning reproducibility is that
hardware non-determinism and idiosyncrasies of floating points
handling across different devices and architectures can result in
different outcomes of the same computation even when starting
from an identical model and identical inputs [12].

In the case of model-based covert messaging this problem mani-
fests itself by the sender and receiver seeing different token distri-
butions from the language model. Prior works implicitly assumed
that both sender and receiver would have the exact same view of
model outputs, but differences in hardware and software stacks
renders this assumption incorrect. Any difference in observed to-
ken probability prevents decoding of the message, and thus this
issue prevented communication for 100% of messages exchanged
between different architectures.

6.1 Increasing Floating-Point Precision
We found that moving from full-precision floating points (32 bits)
to 64-bit floating points can alleviate the problem and reduce differ-
ences between sender and receiver views to the point that reliable
decoding is achieved.1

An obvious drawback of this approach is that it substantially in-
creases model inference time andmemory consumption (by roughly
20% and 50% respectively, in our experiments) and this increase
affects both the sender and the receiver. The inference time is likely

1For example, with PyTorch this can be easily achieved by adding the code line
torch.set_default_dtype(torch.float64) before loading the model.

Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

acceptable, but the increase in memory usage, is a significant hin-
drance, especially for older mobile devices that may not have suffi-
cient memory to even load the model making the system unusable.
It is also worth noting that while we have not observed any failures
with 64-bit floating points, we cannot conclusively determine that
such failures will not occur for device combinations not tested.

6.2 A More Principled Solution
We propose a different solution that leans into the possibility that
the sender and the receiver views of model token distribution may
be distinct. Two types of errors will prevent the exchange of mes-
sages between the sender and receiver. The first type occurs if there
is a sufficiently large difference in the observed probability of Alice
and Bob for a given token. Recall that the encoding process chooses
a token based on the bits it needs to embed according to the sender’s
token distribution. If the receiver sees different probabilities for the
chosen token, it will decode different bits than were encoded. To
avoid this, the predicted probability of tokens with embedded bits
must be identical. This problem can be solved by rounding token
probabilities until they are identical across devices.

The second type occurs when the differences in probabilities be-
tween devices is larger than the probability of a token. This causes
them to swap positions within the (sorted) distribution, and can
cause discrepancies regardless of rounding. To maintain reliability,
our idea is to have the sender and receiver agree on a common
subset of likely tokens (and their probabilities) that captures most
of the probability distribution at each step. We assume a maximum
distortion bound 𝛿 > 0 on the maximum difference between token
probabilities in the sender and receiver views. Subsequent tokens
with a likelihood less than 𝛿 are unreliable. With this the sender
and the receiver determine the common “trusted” subset indepen-
dently by looking at their own view of the token distribution. If
the encoder chooses a token within the trusted subset, then the
process continues as usual and bits are embedded. Otherwise, a
token is chosen randomly within the untrusted subset according to
the sender’s token distribution. In this case the chosen token is still
added to the covertext, however no bits are embedded. The receiver
can then independently check to see if the observed token was part
of the trusted subset, if not it is skipped (since it does not contain
any covert bits) and the receiver continues trying to retrieve bits
from the next token in the covertext.

Unfortunately, not embedding bits under certain conditions
presents a new problem. Arithmetic encoding determines where
in the distribution to select a token from based upon the bits cur-
rently being embedded. If those require the encoder to pull from
the “untrusted” tail of the distribution, there is a possibility that
the encoder will get stuck in a loop of repeatedly selecting tokens
from the tail, without ever embedding any bits.

It’s worth noting here that a similar phenomenon was observed
in other arithmetic embedding schemes from prior work such as
Meteor, and de Witt et al. [9]. They do not use our trusted filter
method, but they encounter sequences of high probability tokens
that are repeatedly chosen but do not allow for the embedding
of bits, leading to a loop with the covertext growing indefinitely
without making progress.

Table 2: Performance statistics over 1000 trials. All times reported
are measured in seconds.

Mean (± Std)
Capacity per Token 3.34 (± 0.53)
Encoded Expansion 11.5 (± 2.86)
Plaintext Bits per Covertext Bits 0.065 (± 0.01)
Mean Sender-side Time 10.1 (± 3.62)
Sentinel Value Check Time 0.795 (± 0.09)
Mean Receiver-side Time 11.58 (± 8.05)
Receiver-side Failure Rate 0.00

We propose a simple solution to both problems: flip the ordering
of cumulative distribution (from ascending to descending and vice
versa) at each encoding step, so that each step uses a different order-
ing than the next. Doing this does not alter the token distribution
in any way, since each token takes the same proportion of the dis-
tribution as before and arithmetic coding does not care about token
order. But this does cause the same embedding bits to select from
different parts of the distribution at each step. Since the flipping
of the ordering of the distribution is deterministic it is trivial to
replicate it on the receiver side.

This process does not influence imperceptibility (KL-divergence).
The downside to this solution is that the covertext expansion does
increase approximately by a factor of two (depending highly on
how much of the distribution is vulnerable to location swaps.)

7 PERFORMANCE
What are the relevant performancemetrics for a model-based covert
messaging system? Two straightforward aspects of system perfor-
mance are capacity and processing times. All else being equal it
is of course desirable to maximize capacity. However, capacity is
normally constrained by the naturalness (e.g., lack of randomness)
of the underlying language model. Further, sampling parameters
and encoding strategy also affect capacity. We define sender side
processing time as the time to encrypt and encode a plaintext into
a covertext and receiver side processing time as the time to decode
and decrypt the covertext back to the plaintext. These processing
times depend on the plaintext length and bits/token, but also on the
design choices made to handle challenges such as handling parsing
ambiguity (Section 4). This is why two covert messaging systems
that rely on the same underlying model may have drastically differ-
ent processing times.

7.1 Measuring Capacity
We measure bits/token as well as overall encoded expansion for
MBFTE, to provide accurate evaluations of how our record con-
struction and checkpoint additions do decrease overall embedding
efficiency. For both capacity and processing times measurements
we performed a single experiment

We use a machine with an Intel Core i7-6700 CPU with 8 GB
of RAM. This machine has no dedicated GPU. While our system
would run on less powerful machines, we posit that this machine
is representative of the average hypothetical desktop user.

The seed for all performance experiments is the line from Isaac
Asimov: “Or maybe it could be put more simply like this: How can

Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, and Thomas Shrimpton

the net amount of entropy of the universe be massively decreased?”,
the temperature is 0.8, and no top-𝑘 or top-𝑝 , aka the full distribu-
tion. We measure the capacity per token as the number of encoded
bits (plaintext bits plus record layer bits) divided by the number of
generated tokens and the encoded expansion is covertext bits di-
vided by encoded bits. Unless otherwise specified, we use the 124M
GPT-2 small model with no fine-tuning. Note, that fine-tuning does
affect capacity per token since it narrows the model distribution
to better fit the data it was trained on. To better show trade-offs,
and since the exact influence is highly dependent on the devices
in question, we provide the time and capacity measurements for a
system without the more complex cross-platform optimization.

7.2 Parameter Tuning & Tradeoffs
We optimized MBFTE’s parameters for covertness and reliability.
For example we use a temperature of 0.8 since this is the least de-
tectable temperature we examined. At this temperature we achieve
approximately 3.34 bits/token. If we were to increase temperature
to 3, we average 15.07 bits/token, but the distribution over tokens
becomes close to uniform which results in outputting gibberish.

Capacity also depends on the model finetuning used. In exper-
iments we observed that finetuned model typically yields a next
token distribution more concentrated on a few tokens than the
base model, which makes sense since it is able to generate more
specific text. Concretely, our model finetuned on Mastodon #news
posts averages a 1.88 bits/token capacity, but is significantly less
detectable when compared against other #news posts.

7.3 Processing and Platform Times
Processing time is most directly related to the number of token pre-
dictions made by the generative model. The shorter the covertext,
the less processing time needed. For this reason most prior work
do not report processing times, with only two reporting the time it
takes their model to generate 50 tokens/words [5, 37]. Kaptchuk et
al. [19] do perform amore in-depth examination of processing times
for different hardware and embedding/compression methods. Al-
though hyper-parameters, hardware, and plaintext length all differ
between our setups, their base CPU setup reports approximately 80
seconds to encode and decode a 160 bytemessage. Their compressed
method achieves significantly better times, at approximately 40 sec-
onds for an 160 byte message, although the improvement seems to
largely comes from generating a much shorter covertext.

As can be seen in Table 2, for a 40 byte plaintext, MBFTE takes
approximately 11.5 seconds to encode the plaintext into a covertext
and 11.58 seconds to decode the plaintext from the covertext. Note
that out of the 1000 messages, approximately 3.4% of them did
not follow the tokenizer path, meaning we used checkpoints and
backtracking to successfully decode them.

Platform times. Sender and receiver processing times only mea-
sure encode and decode speed. So to get a more holistic picture of
the system’s performance we should also consider platform times
— time taken to upload a covertext to the platform or time taken to
retrieve covertexts from the platform. As we previously mentioned,
none of the existing work considers platform times. We used the
Python wrapper for the Mastodon API [13] to post and scrape mes-
sages and found that the time to post and scrape is essentially just

that of the network round-trip time2. This means that performance
is bottlenecked by local operations (encoding/decoding). However,
we found a much larger issue is the receiver identifying which
message is intended for them. It is for this reason we introduced
both covert and overt hints as described in Section 5.

8 SECURITY HEURISTICS IN PRIORWORK
In this section, we discuss heuristics used in prior work. In later
sections, we broaden the scope of security heuristics considered.
Table 1 provides a summary.

8.1 Imperceptibility
The most common heuristic used by prior work to evaluate security
is imperceptibility, which is often measured as the KL-divergence
(KLD) between the output distribution of the system (i.e., that of its
produced covertext) and the output distribution of the underlying
language model (GPT-2) [8, 34, 44]. Other prior works also, or
alternatively, use perplexity to describe imperceptibility.

Measuring imperceptibility enables straightforward comparisons
between various schemes. Since distortion introduced in sampling
from the underlying language model may provide an advantage to
an adversary, lower KLD values indicate higher imperceptibility
and presumably better security. As a result, several papers modify
sampling to reduce the KLD compared to the prior art. For example:
Dai and Cai [8] only embed bits when the KLD for that step is
sufficiently small. Shen et al. [34] dynamically adjusts the distribu-
tion size to minimize the KLD. Other sampling strategies, such as
arithmetic encoding [44], grouping [36, 43], and Meteor [19], do not
take KLD directly into account during the sampling process, but are
still chosen to minimize their effect on the underlying model distri-
bution and thus reduce KLD. Table 3 shows KLD measurements for
prior work and our system.

Table 3: KLD values presented in this work and prior works.

This Work [44] [8] [34] [19] [43] [9] [10]
0.061 0.0013 0.12 0.1 0.045 0.027 10−16 0

Measuring security through imperceptibility (implicitly) assumes
that the adversary is seeking to distinguish GPT-2’s natural output
from the system’s covertext. But, in many natural deployment
scenarios such as the one we consider (i.e., covert communication
over large and public Internet platforms) the covertext is observed
by the adversary alongside normal messages. In such cases, an
adversary that seeks to identify covert communication is instead
attempting to distinguish between covertext and normal messages
— not between covertext and sampled GPT-2 text.

8.2 ML-based Evaluation
Machine learning distinguishers can also be used as a heuristic
for evaluating security. In this case the adversary is modeled as
a binary classifier tasked to distinguish between covertext and
normal platform messages. The classification decisions are made
based on a threshold, which can be varied based on adversarial
2It should be noted that the Mastodon API rate limits by IP address to 300 requests
per 5 minutes

Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

objectives between the two types of errors that the adversary can
make: false alarms (i.e., false positives) and missed detections (i.e.,
false negatives).

A small subset of prior works follows this approach to evaluate
security. Of these works, only Cao et al. [5] use GPT-2. They use a
text steganalysis RNN [41] to distinguish between covertext mes-
sages and text from movie and tweet databases. Their detection
model achieve a maximum accuracy of about 0.74. They find that
the embedding rate has a strong effect on how detectable their
output is. Other works that use machine learning distinguishers
[37, 41, 43] use a variety of steganalysis models [6, 25, 29, 39, 40],
but also use different models to generate text, so their results are
difficult to compare.

Aside from the inevitable limitation that measuring security with
machine learning only provides a lower bound on (in)security —
because better classifiers may be developed in the future — existing
works are limited in the factors they consider. Of all the works that
address ML-based adversaries, the only variable that is examined
past the base steganographic model is embedding rate. They do not
consider different adversary models, hyper-parameters, or other
factors that impact detectability such as fine-tuning. Note that there
exist machine learning classifiers specifically designed to detect
output from a specific language model (e.g., RoBERTA [28] for
GPT-2) but prior work does not use them.

9 COVERTEXT PLAUSIBILITY AND
DECODING ATTACKS

A model-based covert messaging system must be able to plausibly
produce the text of every post on the platform. Otherwise, an adver-
sary can filter out any posts that cannot be produced as not cover-
texts, potentially making covertext detection trivial. To demonstrate
the problem, we describe two attacks that exploit implausibility
with respect to the model and its use; recall that adversaries are
assumed to know everything except secret keys. We also show how
a covert messaging system can avoid this vulnerability.

9.1 Decoding Attacks
Consider an adversary that attempts to detect covert messages by
performing a “decoding attack” whereby it attempts to decode sus-
pect platform posts using the receiver-side process. Specifically, an
adversary acting as a user of the system, with full knowledge of the
model configuration (i.e., model, seed, sampling hyperparameters,
etc.) — just not the secret key — can scrape posts from the platform
and attempt decoding.

Note that for any post containing covertext, this adversary can-
not successfully decrypt the ciphertext to recover the plaintext
without the secret key. However, if the decoding behavior is differ-
ent on regular platform posts than on posts containing covertext,
then the adversary can easily differentiate between the two. An
example where this may occur is for sampling schemes that restrict
the set of possible next tokens such as top-𝑘 and top-𝑝 , or restricted
tree based sampling methods [5, 42]. For every covertext at nearly
every 𝑘 or 𝑝 value, the model can parse a potential path through
the covertext, and therefore decode it. This is not the case for many
or most real platform posts because some of their tokens are not

within the top-𝑘 and top-𝑝 so that the decoding process must abort
before recovering a complete “ciphertext” string.

Unfortunately, some prior work often uses (relatively) small
values of 𝑝 and 𝑘 (e.g., 𝑘 < 1000 most of the time) [34, 44], making
these schemes particularly vulnerable. When evaluating GPT-2
de Witt et al [9] performs some experiments with top-k=40, and
some with top-p=90%. Ding et al. [10], uses top-p ≤ 100% for many
experiments although they do also show results for using the full
distribution. Shen et al. [34] uses a variant of top-𝑘 sampling with
a dynamically adjusted 𝑘 to lower KL-divergence. Other papers
that do not directly rely on top-𝑘 or 𝑝 sampling may still restrict
their next token distribution based on other factors, such as Yu et
al. [42] who restrict each level of their search tree to approximately
26 possible values, essentially resulting in a top-𝑘 of 64.

Table 4: Percentage of decodable real posts on Mastodon #News for
varying sampling strategies and parameters.

Top-𝑘 Real Posts
Decodable

100 0%
1000 70.3%
2000 95.3%
3000 100.0%

Top-𝑝 Real Posts
Decodable

0.9 0%
0.95 9.4%
0.99 81.3%
0.999 100.0%

To understand the relationship between the decoding attack suc-
cess rate and sampling strategies we perform the following experi-
ment.We scraped 1000 posts fromMastodon News and recorded the
proportion of them that could potentially be generated by GPT-2
using the base 124M model for different sampling hyperparame-
ters. The results are shown in Table 4. The decoding attack has a
significant advantage when using small values of hyperparameter
𝑘 or 𝑝 (sometimes to the point of a complete break).

However, even when using large values of 𝑘 (or 𝑝) such as setting
𝑘 = 3000, the adversary still has an advantage. We found that
only 8.8% of real posts could be fully traversed by the tokenizer
using tokens within this top-k, whereas every single steganographic
message with this 𝑘 could be fully traversed. This means that an
adversary could attempt to decode potential covertexts using the
tokenizer path, and deduce that any post that is not compatible
with this path is not a covertext.

Our proposed system avoids this vulnerability completely by
always using the entire token distribution when sampling. Tokens
forbidden by the platform, as described in Section 3, can be excluded
without creating a vulnerability, since other platform messages can-
not contain them either. Stepping back, this vulnerability highlights
the fallacy of focusing the security analysis on the output distri-
bution of covertext versus the natural distribution of the model,
instead of also accounting for system-level design choices (e.g.,
how to handle parsing ambiguities) which have profound security
implications.

9.2 Distribution of Recovered Bits
If a normal platform post can be trial-decoded successfully, the
adversary will recover some bits after decoding it. Consequently,
in order to completely thwart decoding attacks, the recovered bits

Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, and Thomas Shrimpton

from any trial decoding of normal platform posts have to be in-
distinguishable from those recovered from covertexts produced
by the system. Therefore when designing the system, we need to
ensure that the distribution of ciphertext bits produced during en-
coding matches that of the distribution of bits recovered from trial
decoding normal platform posts.

Prior work seems to largely assume the bits being encoded are the
actual message bits encrypted into a uniform distribution [8, 34, 44],
although they refrain from mentioning any specific cryptographic
method. The main exception being Kaptchuk et al. [19]. To see if
this threat can be avoided with proper cryptography we performed
this attack against our cryptographic layer (Section 2.1). Our cryp-
tographic record creation produces a ciphertext bitstream that is
uniform.

We empirically evaluate the distinguishability of bits recovered
from normal platform posts versus covertexts for our system us-
ing (1) entropy tests and (2) statistical tests of randomness. The
idea is that since for MBFTE our ciphertext bits are the output of
an AEAD scheme they cannot be distinguished from uniformly
random bits. Specifically, we constructed 1000 byte segments by
concatenating bitstreams of recovered bits from the decoding of
multiple messages for both covertext and real platform messages
(scraped from Mastodon News). We then calculated the byte-level
entropy of these segments and normalized it. We then repeated this
experiment 100 times to get an average and standard deviation. We
measured an average entropy of 0.967 (±0.0034) for real platform
posts and 0.971 (±0.0026) for covertexts. Calculating entropy over
segments of 1000 bytes provides a reasonably accurate estimate,
but it is unrealistic for an adversary to obtain segments of 1000
bytes given the capacity and expansion factor. So we also repeated
the experiment using segments of 100 bytes (which better reflects
the amount of information an adversary would obtain from a single
message). In that case, we observed an average entropy of 0.779
and 0.784 for real platform posts and MBFTE covertexts, respec-
tively. We conclude that an adversary is unable to distinguish real
messages from MBFTE messages using entropy measurements.
Plausibility According to Statistical Tests. Instead of entropy
tests, an adversary may attempt to distinguish recovered bit strings
using other statistical tests. To evaluate this, we use the NIST sta-
tistical test suite for evaluating pseudorandomness [35]. This test
suite has been used for the design and cryptanalysis of pseudoran-
dom number generators for cryptographic applications. We used
the public implementation of the test suite3 and ran all the tests
on 10 segments of 10,000 bits from each distribution. Bitstreams
for both real posts and covertexts passed all the tests, except for
the serial test where platform messages only passed 6/10 of the
serial tests while MBFTE messages passed 8/10 of the serial tests.
We believe this may be due to the way the 10,000 bits segments
are constructed (which necessarily come from multiple messages).
To further evaluate the scenario where an adversary recovers bits
from a single message, we repeated the experiment using segments
of 400 bits. In that case, some tests (including serial tests) could not
be performed. But both distributions passed all remaining tests.

3https://github.com/terrillmoore/NIST-Statistical-Test-Suite

Figure 2: ROC curves for base 124MGPT-2 generated posts, finetuned
GPT-2 generated posts, MBFTE covertexts generated with finetuned
GPT-2, and finetuned posts where the adversary is unaware of the
finetuning being used.

10 SECURITY CONSIDERATIONS IN
DEPLOYMENT

In this section, we discuss security considerations beyond those
considered in the prior work and plausiblity. These include nat-
uralness of the language model text on the platform, as well as
detection of individual messages and covert-messaging users.

10.1 Naturalness of GPT-2 Text
How natural is GPT-2’s output? Can it be easily distinguished from
regular platform posts? In this section, we empirically investigate
these questions by using an ML-based adversary to distinguish
between GPT’s text output and platform (Mastodon) messages.
These questions are highly relevant to detectability of covertext for
model-based covert messaging systems. However, note that what
we are evaluating here is not the detectability of covertext but the
naturalness of the language model’s output on the platform. This is
an important distinction because regardless of the imperceptibility
of the steganographic technique — most methods including ours
have low KL-divergence with the model’s natural output — if the
model’s output does not fit the platform, it can readily be detected
by an adversary.

We frame the problem as a binary classification task. Given sam-
ple text, the task is to predict whether it is a regular platform post
or the output of GPT-2. We use a Receiver Operating Characteris-
tics (ROC) curve, which plots true positive rate (TPR) versus false
positive rate (FPR) and we calculate the Area Under Curve (AUC).

We use OpenAI’s RoBERTa model, and generate 3 sets of 11, 000
GPT-2 messages using seeds gathered from Mastodon #news, a
temperature of 0.8, and top-𝑘 sampling with 𝑘 = 50000, which is
equivalent to the full distribution. The first set is generated using
the base 124M GPT-2 model. The second set is generated using
a 124M GPT-2 model that has been finetuned on posts scraped
from Mastodon #news. The final set uses the finetuned model and
embeds messages into the generated posts using MBFTE.

For each set of generated posts, we train a RoBERTa model to
differentiate between 10,000 samples of the generated set and 10,000

Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

Table 5: Expected outcomes on 100, 000 platform messages for cover-
texts generated with GPT-2 finetuned on #news for varying base
rates. FPR is set to 0.1%, which corresponds to a TPR of 2.7%. The
last row is the posterior probability that a flagged post is in fact an
covert message.

Base rate
0.1% 0.01% 0%

Actual covert messages 100 10 0
Total messages flagged 103 100 100
False alarms 100 100 100
Missed detection 97 10 0
Covert messages flagged 3 0 0
Posterior probability 0.0263 0.0027 0

of scraped real #news posts. We train the models using the default
parameters values, which include a 2𝑒−5 learning rate and a batch
size of 24 and stop when the training accuracy stops increasing
(after about 15-20 epochs). Additionally, we evaluate the scenario of
the adversary not being aware of the finetuning, and thus attempt
to detect finetuned covertexts using a RoBERTa model trained on
base 124M generated posts.

From the result in Fig. 2 the base 124M GPT-2 output is highly
detectable (AUC=0.998) due to the fact that news posts have a very
specific format and phrasing that base GPT-2 does not imitate well.
With finetuned models, we get significantly better output with for
finetuned posts without embedded messages (AUC=0.801) and with
embedded messages (AUC=0.8332). Finally, when the adversary
does not know the finetuning, they achieve an AUC of 0.618.

We can also compare adversaries by fixing the false positive rate
(FPR) and considering the true positive rate (TPR). We find that
the TPRs for FPR = 0.1% — the lowest rate that we observed and
can accurately estimate — are 90.07% for 124M posts, 15.2% for
Finetuned posts, 2.7% for covertexts, and 1.7% when the finetuning
is unknown. Low TPR at such low FPR indicate the difficulty in
accurately detecting finetuned GPT-2 output and covertext without
significant false positives. We expect larger and more advanced
language models that exhibit greater naturalness to be even less
detectable in the low false positive regime.

10.2 Detecting Individual Messages
An important observation is that detecting covertext posts on the
platform is not the same as classifying a post as normal versus
covertext. This is because once the system is deployed, we need to
consider the base rate of covertext posts on the platform. The base
rate is dependent on the level of activity (e.g., X gets upwards of 500
million posts per day) but also on the activity of users exchanging
covert messages. All else being equal, the lower the base rate, the
more difficult the task is for an adversary. This means that the
higher the activity of covert messaging on the platform the worse
it is for security, which may appear to be counter-intuitive but is
simply a manifestation of base rate neglect [1].

To evaluate this, we imagine deploying a system like MBFTE on
a platform with a high background activity so that a realistic base
rate may be 0.1% or even 0.01%. We take results from Section 10.1 to

have concrete numbers and consider an adversary who minimizes
false positives at the cost of true positives (FPR=0.1%, TPR = 2.7%).
What is the (posterior) probability that if the adversary flags a post
as a potential covert message, the post is in fact a covert message?
It depends on the base rate. What if the base rate is 0.1%? Bayes’
theorem shows this probability to be 0.0263, which is to say that
for every 100 messages flagged, we should only expect 2 or 3 of
them to actually be covert messages (Table 5).

Table 6: Outcomes of user detection (1% of platform users post covert
messages).We assume eachuser posts 100messages froma single user
account on the platform and simulate 10, 000 hypothetical platform
users and their messages.

Base rate
0.01 0.05 0.1 0.2 0.4

TPR at FPR=0.1% 0.01 0.01 0.02 0.09 0.81
Detect. Threshold 0.999 0.998 0.997 0.987 0.905
True Positives 26 69 78 94 99
False Positives 1908 3017 2090 918 146
True Negatives 7992 6883 7810 8982 9754
False Negatives 74 36 22 6 1
Precision 0.013 0.021 0.036 0.093 0.404

10.3 Detecting Users
What if the adversary seeks to detect users of a covert messaging
system instead of covert messages? The adversary can leverage
the fact that a user may post multiple covert messages using the
same platform account. To analyze this, we observe that the rele-
vant base rate is the proportion of a single user platform account’s
posts that are covert messages. On the one hand, this rate could be
significantly higher than for detecting individual messages making
detection easier. On the other hand, there are several ways for the
covert messaging system to decrease this base rate. For example
it can distribute the covert messages across multiple platform ac-
counts, post messages generated with a different model, or post
non-generated posts to these same accounts.

We experimentally evaluate the success rate of an adversary who
seeks to detect covert messaging user accounts on the platform. For
this, we setup the experiment as follows. We consider a (hypotheti-
cal) set of 10, 000 platform user accounts, out of which only 1% are
sending covert messages. We assume that all platform users post
100 messages and associate with each covert user a base rate that
determines the proportion of covertexts among the 100 messages
posted by that platform user account (e.g, if the base rate is 0.1 then
only 10 posts are covertexts). With this setup, the adversary’s task
is binary classification: predict whether a given set of 100messages
comes from a covert user (i.e., whether the set contains at least one
covertext).

We apply our strongest detector (RoBERTa model with fine-
tuning known) independently on each message and then aggregate
the predictions. We expect that if a user is posting covertexts the
detector’s predictions will have higher confidence values than for
non-covert users. So we can combine the predictions by averaging
the top-𝑞 proportion of confidence values where 𝑞 is set to the base

Luke A. Bauer, James K. Howes IV, Sam A. Markelon, Vincent Bindschaedler, and Thomas Shrimpton

rate of covert users. The average is then compared to a threshold to
make the final prediction. The detection threshold is set tomaximize
the difference between the true positive and false positive rates.

The results are shown in Table 6 where we determined the true/-
false positives/negative and precision values based on the detection
threshold. Also, to capture an adversary who seeks to minimize
false alarms we calculate the true positive rate for a false positive
rate of 0.1%. We observe that for base rates lower than 0.2 the true
positive rate is quite low — comparable to the true positive rate of
the RoBERTa detector with known fine-tuning when detecting indi-
vidual messages. More importantly, for low base rates the precision
(i.e., proportion of predicted covert users that are actually posting
covertexts) is low (e.g., only 3.6% for a base rate of 0.2). Most of the
platform users that the adversary flags are false alarms.

The task of detecting users of covert messaging is in some sense
easier than detecting individual covert messages, but for relatively
low base rates the rate of false alarms potentially renders this non-
viable for adversaries. It is worth emphasizing that even with a
ML-based detector with relatively high AUC, detecting individuals
messages or covert message users is surprisingly unsuccessful.

11 LIMITATIONS & FUTURE DIRECTIONS
The focus of our paper is on the challenges that arise when building
a model-based covert messaging system from a steganographic con-
struction. We explicate these challenges, discuss potential solutions,
and surface various performance-security tradeoffs. Like all prior
works, we do not address some deployment issues associated with
rendezvous, key exchange, or link parameter agreement.

In addition to the above omissions, this is a rapidly evolving
field, and future work should re-examine several topics in their
time frame. For instance, this work was done using GPT-2, but
future work should consider switching to more advanced models
such as GPT-3/4 to get more accurate comparisons against non-
generated text. Additionally, MBFTE and other systems that use
large-language models for covert messaging are currently unsuit-
able for low-end or legacy mobile devices, because those devices
may lack the resources (e.g. memory) to support such models.

Note that while our focus is embedding information into cover-
text using a generative model, there has been research on embed-
ding information in other channels on public platforms [18, 23, 38].
For instance, using the liking of certain posts, or posting behavior
to communicate small amounts of information. While the capac-
ity of such methods is small, many of the techniques and security
considerations could be applied to future work.

There are other channels that adversaries could use to detect
covert-messaging users that we have not discussed. An example
is usage pattern analysis; the average user of the platform and a
user of the covert-messaging system could have different posting
frequencies or patterns. An adversary could examine post content,
such as ensuring posts are coherent with each other, or fit the
expected demographics of the poster. Alternatively, the adversary
could use means other than looking at the platform messages (e.g.,
correlating IP addresses).

A system such as ours could be misused by bad actors. However,
the same concerns apply to any other covert/anonymous commu-
nication systems such as Tor. Unfortunately, even good faith use

may spread misinformation, as the generated posts may be taken as
truth. Care should be taken to choose overt signals and finetunings
that minimize the effect of potential misinformation.

ACKNOWLEDGMENTS
This work was supported in part by an award under DARPA BAA
#HR001118S0052. The views, opinions, and/or findings expressed
are those of the author(s) and should not be interpreted as repre-
senting the official views or policies of the Department of Defense
or the U.S. Government.

REFERENCES
[1] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection.

ACM Transactions on Information and System Security (TISSEC), 3(3):186–205,
2000.

[2] Sam Burnett, Nick Feamster, and Santosh S Vempala. Chipping away at cen-
sorship firewalls with user-generated content. In USENIX Security Symposium,
pages 463–468. Washington, DC, 2010.

[3] Christian Cachin. An information-theoretic model for steganography. In David
Aucsmith, editor, Information Hiding, pages 306–318, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[4] Christian Cachin. An information-theoretic model for steganography. Inf.
Comput., 192(1):41–56, July 2004.

[5] Yi Cao, Zhili Zhou, Chinmay Chakraborty, Meimin Wang, QM Jonathan Wu,
Xingming Sun, and Keping Yu. Generative steganography based on long readable
text generation. IEEE Transactions on Computational Social Systems, 2022.

[6] Zhili Chen, Liusheng Huang, Zhenshan Yu, Wei Yang, Lingjun Li, Xueling Zheng,
and Xinxin Zhao. Linguistic steganography detection using statistical character-
istics of correlations between words. In International Workshop on Information
Hiding, pages 224–235. Springer, 2008.

[7] Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan,
and Noah A Smith. All that’s ‘human’is not gold: Evaluating human evaluation
of generated text. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 7282–7296, 2021.

[8] Falcon Dai and Zheng Cai. Towards near-imperceptible steganographic text.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4303–4308, 2019.

[9] Christian Schroeder de Witt, Samuel Sokota, J Zico Kolter, Jakob Foerster, and
Martin Strohmeier. Perfectly secure steganography using minimum entropy
coupling. arXiv preprint arXiv:2210.14889, 2022.

[10] Jinyang Ding, Kejiang Chen, Yaofei Wang, Na Zhao, Weiming Zhang, and Neng-
hai Yu. Discop: Provably secure steganography in practice based on “distribution
copies”. In 2023 IEEE Symposium on Security and Privacy (SP), pages 2238–2255.
IEEE Computer Society, 2023.

[11] Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38,
1994.

[12] Odd Erik Gundersen, Kevin Coakley, Christine Kirkpatrick, and Yolanda Gil.
Sources of irreproducibility in machine learning: A review. arXiv preprint
arXiv:2204.07610, 2022.

[13] Halcy. halcy/mastodon.py. https://github.com/halcy/Mastodon.py.
[14] Nicholas Hopper, Luis von Ahn, and John Langford. Provably secure steganog-

raphy. IEEE Transactions on Computers, 58(5):662–676, 2008.
[15] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganog-

raphy. In Proceedings of the 22nd Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO ’02, pages 77–92, Berlin, Heidelberg, 2002.
Springer-Verlag.

[16] Paul G Howard and Jeffrey Scott Vitter. Practical implementations of arithmetic
coding. In Image and text compression, pages 85–112. Springer, 1992.

[17] James K Howes, Marios Georgiou, Alex J Malozemoff, and Thomas Shrimp-
ton. Security foundations for application-based covert communication channels.
In 2022 IEEE Symposium on Security and Privacy (SP), pages 1527–1527. IEEE
Computer Society, 2022.

[18] Yinghong Hu, Zichi Wang, and Xinpeng Zhang. Steganography in social net-
works based on behavioral correlation. IETE Technical Review, 38(1):93–99, 2021.

[19] Gabriel Kaptchuk, Tushar M Jois, Matthew Green, and Aviel D Rubin. Meteor:
Cryptographically secure steganography for realistic distributions. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 1529–1548, 2021.

[20] Stefan Katzenbeisser and Fabien AP Petitcolas. Defining security in stegano-
graphic systems. In Security andWatermarking of Multimedia Contents IV, volume
4675, pages 50–56. International Society for Optics and Photonics, 2002.

https://github.com/halcy/Mastodon.py

Leveraging Generative Models for Covert Messaging:
Challenges and Tradeoffs for “Dead-Drop” Deployments

[21] Andrew D. Ker, Patrick Bas, Rainer Böhme, Rémi Cogranne, Scott Craver, Tomáš
Filler, Jessica Fridrich, and Tomáš Pevný. Moving steganography and steganalysis
from the laboratory into the real world. In Proceedings of the First ACMWorkshop
on Information Hiding and Multimedia Security, IH&MMSec ’13, pages 45–58,
New York, NY, USA, 2013. ACM.

[22] Tri Van Le and Kaoru Kurosawa. Bandwidth optimal steganography secure
against adaptive chosen stegotext attacks. In Jan L. Camenisch, Christian S.
Collberg, Neil F. Johnson, and Phil Sallee, editors, Information Hiding, pages
297–313, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[23] Shujun Li, Anthony TS Ho, Zichi Wang, and Xinpeng Zhang. Lost in the digital
wild: Hiding information in digital activities. In Proceedings of the 2nd Interna-
tional Workshop on Multimedia Privacy and Security, pages 27–37, 2018.

[24] Maciej Liśkiewicz, Rüdiger Reischuk, and UlrichWölfel. Grey-box steganography.
In Proceedings of the 8th Annual Conference on Theory and Applications of Models
of Computation, TAMC’11, pages 390–402, Berlin, Heidelberg, 2011. Springer-
Verlag.

[25] Peng Meng, Liusheng Hang, Wei Yang, Zhili Chen, and Hu Zheng. Linguistic
steganography detection algorithm using statistical language model. In 2009
international conference on information technology and computer science, volume 2,
pages 540–543. IEEE, 2009.

[26] Mohsen Minaei, Pedro Moreno-Sanchez, and Aniket Kate. Moneymorph: Cen-
sorship resistant rendezvous using permissionless cryptocurrencies. Proc. Priv.
Enhancing Technol., 2020(3):404–424, 2020.

[27] Thomas Mittelholzer. An information-theoretic approach to steganography and
watermarking. In International Workshop on Information Hiding, pages 1–16.
Springer, 1999.

[28] OpenAI. openai/gpt-2-output-dataset (detector). https://github.com/openai/gpt-
2-output-dataset/tree/master/detector.

[29] Wanli Peng, Jinyu Zhang, Yiming Xue, and Zhenghong Yang. Real-time text
steganalysis based on multi-stage transfer learning. IEEE Signal Processing Letters,
28:1510–1514, 2021.

[30] Liam Porr. My gpt-3 blog got 26 thousand visitors in 2 weeks. https://liamp.
substack.com/p/my-gpt-3-blog-got-26-thousand-visitors.

[31] Frank Rubin. Arithmetic stream coding using fixed precision registers. IEEE
Transactions on Information Theory, 25(6):672–675, 1979.

[32] Phil Sallee. Model-based steganography. In Ton Kalker, Ingemar Cox, and
Yong Man Ro, editors, Digital Watermarking, IWDW 2003, pages 154–167, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[33] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

[34] Jiaming Shen, Heng Ji, and Jiawei Han. Near-imperceptible neural linguistic
steganography via self-adjusting arithmetic coding. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
303–313, 2020.

[35] Elaine Barker Smid, Stefan Leigh, Mark Levenson, Mark Vangel, AlanHeckert
DavidBanks, and SanVo JamesDray. A statistical test suite for random and pseudo-
random number generators for cryptographic applications. Her research interest
includes Computer security, secure operating systems, Access control, Distributed
systems, Intrusion detection systems, 2010.

[36] Tianyu Yang, HanzhouWu, Biao Yi, Guorui Feng, and Xinpeng Zhang. Semantic-
preserving linguistic steganography by pivot translation and semantic-aware
bins coding. arXiv preprint arXiv:2203.03795, 2022.

[37] Zhong-Liang Yang, Xiao-Qing Guo, Zi-Ming Chen, Yong-Feng Huang, and Yu-Jin
Zhang. Rnn-stega: Linguistic steganography based on recurrent neural networks.
IEEE Transactions on Information Forensics and Security, 14(5):1280–1295, 2018.

[38] Zhongliang Yang, Yuting Hu, Yongfeng Huang, and Yujin Zhang. Behavioral
security in covert communication systems. InDigital Forensics andWatermarking:
18th International Workshop, IWDW 2019, Chengdu, China, November 2–4, 2019,
Revised Selected Papers 18, pages 377–392. Springer, 2020.

[39] Zhongliang Yang, Yongfeng Huang, and Yu-Jin Zhang. A fast and efficient text
steganalysis method. IEEE Signal Processing Letters, 26(4):627–631, 2019.

[40] Zhongliang Yang, Yongfeng Huang, and Yu-Jin Zhang. Ts-csw: text steganal-
ysis and hidden capacity estimation based on convolutional sliding windows.
Multimedia Tools and Applications, 79(25):18293–18316, 2020.

[41] Zhongliang Yang, Ke Wang, Jian Li, Yongfeng Huang, and Yu-Jin Zhang. Ts-rnn:
text steganalysis based on recurrent neural networks. IEEE Signal Processing
Letters, 26(12):1743–1747, 2019.

[42] Long Yu, Yuliang Lu, Xuehu Yan, and Yongqiang Yu. Mts-stega: Linguistic
steganography based on multi-time-step. Entropy, 24(5):585, 2022.

[43] Siyu Zhang, Zhongliang Yang, Jinshuai Yang, and Yongfeng Huang. Provably
secure generative linguistic steganography. arXiv preprint arXiv:2106.02011, 2021.

[44] Zachary Ziegler, Yuntian Deng, and Alexander M Rush. Neural linguistic
steganography. In EMNLP-IJCNLP, pages 1210–1215, 2019.

[45] Jan Zöllner, Hannes Federrath, Herbert Klimant, Andreas Pfitzmann, Rudi Pi-
otraschke, Andreas Westfeld, Guntram Wicke, and Gritta Wolf. Modeling the
security of steganographic systems. In International Workshop on Information
Hiding, pages 344–354. Springer, 1998.

https://github.com/openai/gpt-2-output-dataset/tree/master/detector
https://github.com/openai/gpt-2-output-dataset/tree/master/detector
https://liamp.substack.com/p/my-gpt-3-blog-got-26-thousand-visitors
https://liamp.substack.com/p/my-gpt-3-blog-got-26-thousand-visitors

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Model-Based Covert Messaging
	2.2 MBFTE
	2.3 Threat Model & Security

	3 Handling Platform Idiosyncracies
	3.1 Length Limits
	3.2 Token Restrictions

	4 Handling Ambiguous Parsing
	4.1 Nonprefix-free Vocabulary
	4.2 Balancing Reliability, Capacity, and Receiver-Side Efficiency

	5 Identifying and Retrieving Messages
	5.1 Overt Signaling
	5.2 Covert Signaling

	6 Handling Cross-Device Discrepancies
	6.1 Increasing Floating-Point Precision
	6.2 A More Principled Solution

	7 Performance
	7.1 Measuring Capacity
	7.2 Parameter Tuning & Tradeoffs
	7.3 Processing and Platform Times

	8 Security Heuristics in Prior Work
	8.1 Imperceptibility
	8.2 ML-based Evaluation

	9 Covertext Plausibility and Decoding Attacks
	9.1 Decoding Attacks
	9.2 Distribution of Recovered Bits

	10 Security Considerations in Deployment
	10.1 Naturalness of GPT-2 Text
	10.2 Detecting Individual Messages
	10.3 Detecting Users

	11 Limitations & Future Directions
	References

